Multimedia Tools and Applications

, Volume 78, Issue 3, pp 2939–2961 | Cite as

Mission-oriented service development using capability-based semantic recommendation for the internet of things

  • Seheon Song
  • Sang Oh ParkEmail author
  • SangIl Lee
  • JaeHyun ParkEmail author


This paper presents a mission-oriented service development environment with web-based modeling tool that enable users create workflow-based service composition. This approach utilizes the ontology-based mission service model composed of mission, task, service and resource, and task/service recommendation. During developing the mission-oriented service, capability-based semantic matching and hierarchical relationship-based filtering are used for three types of recommendation. Also, we develop a modeling environment to monitor and execute the mission service application. In experiments, we have conducted on test beds in two domains such as military environment and smart building.


Mission service Capability-based semantic matching Recommendation Ontology, IoT 



“This work was supported by the Civil-Military Technology Cooperation Program” (UM13018RD1)


  1. 1.
    Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutorials 17(4):2347–2376. doi: 10.1109/COMST.2015.2444095 CrossRefGoogle Scholar
  2. 2.
    Barnaghi P, Wang W, Henson C, Taylor K (2012) Semantics for the internet of things: early progress and back to the future. Int J Semant Web Inf Syst 8(1):1–21. doi: 10.4018/jswis.2012010101 CrossRefGoogle Scholar
  3. 3.
    Bermudez L, Graybeal J, Arko R (2006) A marine platforms ontology: experiences and lessons. In: Proceedings of the ISWC 2006 Workshop on semantic sensor networks, Athens GA, USAGoogle Scholar
  4. 4.
    Cassar G, Barnaghi P, Wang W, Moessner K (2012) A hybrid semantic matchmaker for IoT services. In: 2012 I.E. International Conference on Green Computing and Communications. pp 210–216Google Scholar
  5. 5.
    Choi HS, Rhee WS (2014) Iot-based user-driven service modeling environment for a smart space management system. Sensors (Switzerland) 14(11):22039–22064. doi: 10.3390/s141122039 CrossRefGoogle Scholar
  6. 6.
    Gomez M, Preece A, Johnson MP, et al (2008). An Ontology-Centric Approach to Sensor-Mission Assignment. In: Gangemi A, Euzenat J (Eds.), Knowledge engineering: practice and patterns: 16th International Conference, EKAW 2008, Acitrezza, Italy, September 29–October 2, 2008. Proceedings (pp. 347–363). Berlin: Springer Berlin Heidelberg. doi: 10.1007/978-3-540-87696-0_30
  7. 7.
    Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29:1645–1660. doi: 10.1016/j.future.2013.01.010 CrossRefGoogle Scholar
  8. 8.
    Hachem S, Teixeira T, Issarny V (2011) Ontologies for the internet of things. In: Proceedings of the 8th Middleware Doctoral Symposium (MDS ‘11). ACM, New York. doi:  10.1145/2093190.2093193. Article 3, 6 pages
  9. 9.
    Han SN, Lee GM, Crespi N (2014) Semantic context-aware service composition for building automation system. IEEE Trans Ind Inf 10(1):252–261. doi: 10.1109/TII.2013.2252356 CrossRefGoogle Scholar
  10. 10.
    Ko I-Y, Ko H-G, Molina AJ, Kwon J (2016) SoIoT ACM Transactions on Internet Technology. 16(2):1–21. doi: 10.1145/2835492
  11. 11.
    Kotis K, Katasonov A (2013) Semantic interoperability on the internet of things: the semantic smart gateway framework. Int J Distrib Syst Technol 4(3):47–69. doi: 10.4018/jdst.2013070104 CrossRefGoogle Scholar
  12. 12.
    Levchuk GM, Levchuk YN, Pattipati KR, Kleinman DL (2002) Normative design of organizations. I. Mission planning. IEEE Trans Syst Man Cybern Syst Hum 32(3):346–359. doi: 10.1109/TSMCA.2002.802819 CrossRefGoogle Scholar
  13. 13.
    López E, García-Macías JA (2012) Mashing up the internet of things: a framework for smart environments. EURASIP J Wirel Commun Netw 2012(1):79. doi: 10.1186/1687-1499-2012-79 CrossRefGoogle Scholar
  14. 14.
    McMullen D, Reichherzer T (2006) The common instrument middleware architecture (CIMA): instrument ontology & applications. In: Proceedings of the 2nd Workshop on Formal Ontologies Meets Industry (FOMI 2006), Trento, Italy, pp 655–663Google Scholar
  15. 15.
    MILO (Mid-Level Ontology). Accessed 11 Apr 2017
  16. 16.
    OWL Web Ontology Language. Accessed 11 Apr 2017
  17. 17.
    Paolucci M, Kawamura T, Payne TR, Sycara KP (2002) Semantic matching of web services capabilities. In: Proceedings of the First International Semantic Web Conference (ISWC 2002). Springer-Verlag, London, pp 333–347Google Scholar
  18. 18.
    Pease A, Niles I, LI J (2002) The suggested upper merged ontology: a large ontology for the semantic web and its applications. In: Proceedings of working notes of the AAAI-2002 Workshop on ontologies and the semantic web, Edmonton, Canada, 28 July–1 AugustGoogle Scholar
  19. 19.
    Protégé 3.5. Accessed 11 Apr 2017
  20. 20.
    Robin A, Havens S, Cox S et al (2006) OpenGIS sensor model language (SensorML) implementation specification. Technical report, Open Geospatial Consortium IncGoogle Scholar
  21. 21.
    Rueda C, Galbraith N, Morris RA et al (2010) The MMI Device Ontology: Enabling Sensor Integration AGU Fall Meeting AbstractsGoogle Scholar
  22. 22.
    Russomanno D, Kothari C, Thomas O (2005) Building a sensor ontology: a practical approach leveraging ISO and OGC models. In: Proceedings of the International Conference on Artificial Intelligence, pp 637–643Google Scholar
  23. 23.
    Ryu M, Kim J, Yun J (2015) Integrated semantics service platform for the internet of things: a case study of a smart office. Sensors (Basel, Switzerland) 15(1):2137–2160. doi: 10.3390/s150102137 CrossRefGoogle Scholar
  24. 24.
    Sheehan JH, Deitz PH, Bray BE, Harris BA, Wong ABH (2003) The military missions and means framework. In: Proceedings of the Interservice/Industry Training and Simulation and Education Conference, pp 655–663Google Scholar
  25. 25.
    Song S, Lee SW (2013) A goal-driven approach for adaptive service composition using planning. Math Comput Model 58(1–2):261–273. doi: 10.1016/j.mcm.2012.08.007 CrossRefGoogle Scholar
  26. 26.
    Song S, Lee C, Lee S, Park J (2016) Capability-based semantic matching for dynamic resource allocation in tactical edge environment. J Supercomput 72(9):3646–3662. doi: 10.1007/s11227-016-1765-0 CrossRefGoogle Scholar
  27. 27.
    SPARQL Query Language for RDF, W3C Recommendation. Accessed 11 Apr 2017
  28. 28.
    Stavropoulos TG, Vrakas D, Vlachava D, Bassiliades N (2012) BOnSAI: a smart building ontology for ambient intelligence. In: 2nd International Conference on web intelligence, mining and semanticsGoogle Scholar
  29. 29.
    Suggested Upper Merged Ontology (SUMO). Accessed 11 Ap 2017
  30. 30.
  31. 31.
    Tzortzis G (2016) A semi-automatic approach for semantic IoT service composition. In: Workshop on Artificial Intelligence and Internet of Things in conjunction with SETN 2016Google Scholar
  32. 32.
    Wang W, De S, Cassar G, Moessner PK (2013) Knowledge representation in the internet of things: semantic modelling and its applications. Automatika 54(4):388–400. doi: 10.7305/automatika.54-4.414 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Metabuild Co.,Ltd.SeoulSouth Korea
  2. 2.School of Computer Science and EngineeringChung-Ang UniversitySeoulSouth Korea
  3. 3.Agency for Defense DevelopmentSeoulSouth Korea

Personalised recommendations