Multimedia Tools and Applications

, Volume 77, Issue 10, pp 11807–11821 | Cite as

An optimized real time algorithm for window frost formation suited to mobile devices

  • Jaeho Im
  • MyungJin Choi
  • Jung Lee
  • Chang-Hun Kim


We propose a real time simulation for window frost formation on mobile devices that uses both particles and grids. Previous ice formation methods made heavy demands on both memory and computational capacity because they were designed for a desktop environment. In this paper, a frost skeleton grows around a location touched by the user using particles, and the ice surfaces are constructed using a grid. Using a nonlattice random-walk technique, the frost skeleton grows freely and naturally. A hash grid technique is used to search efficiently for neighbor particles during the crystallization process. Finally, some 2.5D details are added to the ice skeleton by adjusting the height of the grid vertices around the skeleton. Experiments show that our method creates realistic frost in real time. Our method can be used to express ice formation effects in touch-based mobile device applications such as weather forecasts or games.


Window frost Ice formation Mobile device 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, ICT and Future Planning (NRF-2017R1A2B2005380) and Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (MSIP; 2016-0-00285, High performance computing [HPC] based rendering solution development) and Korea Creative Content Agency(KOCCA) grant funded by the Korea government(MCST) (2015-0-00060, Developing the technology of open composable content editors for realistic media) and Business for Cooperative R&D between Industry, Academy, and Research Institute funded P Korea Small and Medium Business Administration (Grant C0443008).


  1. 1.
    Carte AE (1961) Air bubbles in ice. Proc Phys Soc 77(3):757. CrossRefGoogle Scholar
  2. 2.
    Festenberg NV, Gumhold S (2011) Diffusion-based snow cover generation. Comput Graphics Forum 30(6):1837–1849. doi: 10.1111/j.1467-8659.2011.01904.x CrossRefGoogle Scholar
  3. 3.
    Gagnon J, Paquette E (2011) Procedural and interactive icicle modeling. Vis Comput 27(6):451–461. doi: 10.1007/s00371-011-0584-9 CrossRefGoogle Scholar
  4. 4.
    Grinstein G, Mazenko G (1986) Directions in condensed matter physics: memorial volume in honor of Shang-keng Ma, vol 1. World ScientificGoogle Scholar
  5. 5.
    Im J, Park H, Kim JH, Kim CH (2013) A particle-grid method for opaque ice formation. Comput Graphics Forum 32(2pt3):371–377. doi: 10.1111/cgf.12057 CrossRefGoogle Scholar
  6. 6.
    Ishikawa T, Dobashi Y, Yue Y, Kakimoto M, Watanabe T, Kondo K, Iwasaki K, Nishita T (2013) Visual simulation of glazed frost. In: ACM SIGGRAPH 2013 Posters, SIGGRAPH ’13. ACM, New York, pp 14:1–14:1. doi: 10.1145/2503385.2503400
  7. 7.
    Iwasaki K, Uchida H, Dobashi Y, Nishita T (2010) Fast particle-based visual simulation of ice melting. Comput Graphics Forum 29(7):2215–2223. doi: 10.1111/j.1467-8659.2010.01810.x CrossRefGoogle Scholar
  8. 8.
    Kamal K, Kaykobad M (2008) Generation of mountain ranges by modifying a controlled terrain generation approach. In: 11th international conference on computer and information technology, 2008. ICCIT 2008. pp 527–532, doi: 10.1109/ICCITECHN.2008.4803058
  9. 9.
    Kharitonsky D, Gonczarowski J (1993) A physically based model for icicle growth. Vis Comput 10(2):88–100. doi: 10.1007/BF01901945 CrossRefGoogle Scholar
  10. 10.
    Kim T, Henson M, Lin MC (2004) A hybrid algorithm for modeling ice formation. In: Proceedings of the 2004 ACM SIGGRAPH/eurographics symposium on computer animation, SCA ’04. Eurographics Association, Aire-la-Ville, Switzerland, pp 305–314. doi: 10.1145/1028523.1028564
  11. 11.
    Kim T, Adalsteinsson D, Lin MC (2006) Modeling ice dynamics as a thin-film stefan problem. In: Proceedings of the 2006 ACM SIGGRAPH/eurographics symposium on computer animation, SCA ’06. Eurographics Association, Aire-la-Ville, Switzerland, pp 167–176.
  12. 12.
    Madrazo C, Tsuchiya T, Sawano H, Koyanagi K (2009) Air bubbles in ice by simulating freezing phenomenon. The Journal of the Society for Art and Science 8(1):35–42Google Scholar
  13. 13.
    Marechal N, Guerin E, Galin E, Merillou S, Merillou N (2010) Heat transfer simulation for modeling realistic winter sceneries. Comput Graphics Forum 29(2):449–458. doi: 10.1111/j.1467-8659.2009.01614.x CrossRefGoogle Scholar
  14. 14.
    Meakin P (1983) Diffusion-controlled cluster formation in two, three, and four dimensions. Phys. Rev. A 27:604–607. doi: 10.1103/PhysRevA.27.604 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Miao Y, Xiao S (2015) Particle-based ice freezing simulation. In: Proceedings of the 14th ACM SIGGRAPH international conference on virtual reality continuum and its applications in industry, VRCAI ’15. ACM, New York, pp 17–22. doi: 10.1145/2817675.2817676
  16. 16.
    Müller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/eurographics symposium on computer animation. Eurographics Association, pp 154–159Google Scholar
  17. 17.
    Nishino T, Iwasaki K, Dobashi Y, Nishita T (2012) Visual simulation of freezing ice with air bubbles. In: SIGGRAPH asia 2012 technical briefs, SA ’12. ACM, New York, pp 1:1–1:4. doi: 10.1145/2407746.2407747
  18. 18.
    Reynolds DT, Laycock SD, Day AM (2014) Real-time accumulation of occlusion-based snow. Vis Comput 31(5):689–700. doi: 10.1007/s00371-014-0995-5 CrossRefGoogle Scholar
  19. 19.
    Seipel S, Nivfors A (2007) Real-time rendering of ice. In: Proceedings of the ninth IASTED international conference on computer graphics and imaging, CGIM ’07. ACTA Press, Anaheim, pp 60–66.
  20. 20.
    Stam J (1999) Stable fluids. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques, SIGGRAPH ’99. ACM Press/Addison-Wesley Publishing Co., New York, pp 121–128. doi: 10.1145/311535.311548
  21. 21.
    Stanton M, Humberston B, Kase B, O’Brien JF, Fatahalian K, Treuille A (2014) Self-refining games using player analytics. ACM Trans Graph 33(4):73:1–73:9. doi: 10.1145/2601097.2601196 CrossRefzbMATHGoogle Scholar
  22. 22.
    Stomakhin A, Schroeder C, Chai L, Teran J, Selle A (2013) A material point method for snow simulation. ACM Trans Graph 32(4):102:1–102:10. doi: 10.1145/2461912.2461948 CrossRefzbMATHGoogle Scholar
  23. 23.
    Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403. doi: 10.1103/PhysRevLett.47.1400 CrossRefGoogle Scholar
  24. 24.
    Zhu Y, Bridson R (2005) Animating sand as a fluid. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05. ACM, New York, pp 965–972. doi: 10.1145/1186822.1073298

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Korea UniversitySeoulRepublic of Korea
  2. 2.Hallym UniversityChuncheonRepublic of Korea

Personalised recommendations