Multimedia Tools and Applications

, Volume 77, Issue 7, pp 8393–8418 | Cite as

Transreceiving of encrypted medical image – a cognitive approach

  • Padmapriya Praveenkumar
  • N. Kerthana Devi
  • Dhivya Ravichandran
  • J. Avila
  • K. Thenmozhi
  • John Bosco Balaguru Rayappan
  • Rengarajan Amirtharajan


Recently, there is an increasing demand for efficient and secure transreception of medical images in telemedicine applications. Though a fixed spectrum is allocated to each user, most of the time it remains unused by the concerned user. Cognitive Radio (CR) is a technology that utilizes the unused spectrum efficiently by adopting spectrum sensing concept. This paper proposes an efficient and secure transmission of medical images by adopting CR technology and image encryption technique. Firstly, the novel medical image encryption algorithm is proposed to encrypt the DICOM (Digital Imaging and Communications in Medicine) image effectively. Then, the spectrum sensing technique is carried out via Universal Software Radio Peripheral (USRP) to sense the unused frequency band to transmit the encrypted bio signal. The proposed encryption algorithm combines DNA (Deoxyribo Nucleic Acid) sequence operation and chaotic maps to successfully encrypt the DICOM image pixels. Experimental results are done and various analysis such as Unified Average Changing Intensity (UACI), Number of Pixel Changing Rate (NPCR), entropy estimation and chi-square tests are carried out to validate the sternness of the encryption algorithm.


Image encryption DNA Chaotic maps Cognitive radio USRP 



Authors would like to express their sincere thanks to SASTRA University, for the financial support under R&M fund (R&M/0027/SEEE – 010/2012–13) to carry out this research work. Also, we are grateful to Dr. S. Vanoli, Medical Superintendent, Government Hospital, Ariyalur, for his valuable suggestions in carrying out this work.


  1. 1.
    Akyildiz I, Lee WY, Vuran MC, Mohanty S (2008) A survey on spectrum management in cognitive radio networks. IEEE Commun Mag 46:40–48. doi: 10.1109/MCOM.2008.4481339 CrossRefGoogle Scholar
  2. 2.
    Al-Ayyoub M, Jararweh Y (2016) Virtualization-based cognitive radio networks. J Syst 117:15–29. doi: 10.1016/j.jss.2016.02.014 Google Scholar
  3. 3.
    Alsaedi, M. (2016) Colored image encryption and decryption using multi-chaos 2D quadratic strange attractors and matrix transformations. Multimed Tools Appl (2016). doi: 10.1007/s11042-016-4206-4
  4. 4.
    Althunibat S, Wang Q, Granelli F (2016) Flexible channel selection mechanism for cognitive radio based last mile smart grid communications. Ad Hoc Netw 41:47–56. doi: 10.1016/j.adhoc.2015.10.008 CrossRefGoogle Scholar
  5. 5.
    Alvarez G, Li S (2006) Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurc Chaos 16:2129–2151. doi: 10.1142/S0218127406015970 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Belazi A, Abd El-Latif AA, Diaconu A-V, Rhouma R, Belghith S (2017) Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms. Opt Lasers Eng 88:37–50. doi: 10.1016/j.optlaseng.2016.07.010 CrossRefGoogle Scholar
  7. 7.
    Boriga, R., Dǎscǎlescu, A.C., Diaconu, A.-V. (2014) A new one-dimensional chaotic map and its use in a novel real-time image encryption scheme (2014) advances in multimedia, 2014, art. no. 409586. doi: 10.1155/2014/409586
  8. 8.
    Cedillo-Hernandez M, Garcia-Ugalde F, Nakano-Miyatake M, Perez-Meana H (2013) Robust watermarking method in DFT domain for effective management of medical imaging. Signal, Image Video Process 9:1163–1178. doi: 10.1007/s11760-013-0555-x CrossRefGoogle Scholar
  9. 9.
    Diaconu AV (2016) Circular inter-intra pixels bit-level permutation and chaos-based image encryption. Inf Sci 355–356:314–327. doi: 10.1016/j.ins.2015.10.027 CrossRefGoogle Scholar
  10. 10.
    Dridi M, Bouallegue B, Mtibaa A (2014) Crypto-compression of medical image based on DCT and chaotic system. Global Summit on Computer & Information Technology (GSCIT), Sousse, pp. 1-6. doi: 10.1109/GSCIT.2014.6970113
  11. 11.
    Guesmi R, Farah M, Kachouri A, Samet M (2016) A novel chaos-based image encryption using DNA sequence operation and secure hash algorithm SHA-2. Nonlinear Dyn 83:1123–1136. doi: 10.1007/s11071-015-2392-7 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Heider D, Barnekow A (2007) DNA-based watermarks using the DNA-crypt algorithm. BMC Bioinf 8:176. doi: 10.1186/1471-2105-8-176 CrossRefGoogle Scholar
  13. 13.
    Jain A, Rajpal N (2015) A robust image encryption algorithm resistant to attacks using DNA and chaotic logistic maps. Multimed Tools Appl 75:5455–5472. doi: 10.1007/s11042-015-2515-7 CrossRefGoogle Scholar
  14. 14.
    Khan MK, Zhang J (2007) An intelligent fingerprint-biometric image scrambling scheme. Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence Volume 4682 of the series Lecture Notes in Computer Science pp 1141–1151. doi: 10.1007/978-3-540-74205-0_118
  15. 15.
    Khan MK, Zhang J, Tian L (2005) Protecting biometric data for personal identification. Advances in Biometric Person Authentication Volume 3338 of the series Lecture Notes in Computer Science pp 629–638 doi: 10.1007/978-3-540-30548-4_72
  16. 16.
    Khan MK, Zhang J, Alghathbar K (2011) Challenge-response-based biometric image scrambling for secure personal identification. Futur Gener Comput Syst 27(4):411–418. doi: 10.1016/j.future.2010.05.019 CrossRefGoogle Scholar
  17. 17.
    Kocarev L (2001) Chaos-based cryptography: a brief overview. IEEE Circuits Syst Mag 1:6–21. doi: 10.1109/7384.963463 CrossRefGoogle Scholar
  18. 18.
    Kulsoom A, Xiao D, Abbas S (2016) An efficient and noise resistive selective image encryption scheme for gray images based on chaotic maps and DNA complementary rules. Multimed Tools Appl 75:1–23. doi: 10.1007/s11042-014-2221-x CrossRefGoogle Scholar
  19. 19.
    Leier A, Richter C, Banzhaf W, Rauhe H (2000) Cryptography with DNA binary strands. Biosystems 57:13–22. doi: 10.1016/S0303-2647(00)00083-6 CrossRefGoogle Scholar
  20. 20.
    Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518. doi: 10.1109/TIFS.2014.2381872 CrossRefGoogle Scholar
  21. 21.
    Li X, Wang L, Yan Y, Liu P (2016) An improvement color image encryption algorithm based on DNA operations and real and complex chaotic systems. Opt - Int J Light Electron Opt 127:2558–2565. doi: 10.1016/j.ijleo.2015.11.221 CrossRefGoogle Scholar
  22. 22.
    Liao X, Shu C (2015) Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels. J Vis Commun Image Represent 28(4):21–27. doi: 10.1016/j.jvcir.2014.12.007 CrossRefGoogle Scholar
  23. 23.
    Liao X, Li K, Yin J (2016) Separable data hiding in encrypted image based on compressive sensing and discrete Fourier transform. Multimed Tools Appl (2016). doi: 10.1007/s11042-016-3971-4
  24. 24.
    Lima JB, Madeiro F, Sales FJR (2015) Encryption of medical images based on the cosine number transform. Signal Process Image Commun 35:1–8. doi: 10.1016/j.image.2015.03.005 CrossRefGoogle Scholar
  25. 25.
    Liu H, Wang X, kadir A (2012) Image encryption using DNA complementary rule and chaotic maps. Appl Soft Comput 12:1457–1466. doi: 10.1016/j.asoc.2012.01.016
  26. 26.
    Liu L, Zhang Q, Wei X (2012) A RGB image encryption algorithm based on DNA encoding and chaos map. Comput Electr Eng 38:1240–1248. doi: 10.1016/j.compeleceng.2012.02.007 CrossRefGoogle Scholar
  27. 27.
    Liu Y, Wang J, Fan J, Gong L (2016) Image encryption algorithm based on chaotic system and dynamic S-boxes composed of DNA sequences. Multimed Tools Appl 75:4363–4382. doi: 10.1007/s11042-015-2479-7 CrossRefGoogle Scholar
  28. 28.
    Masuda N, Aihara K (2002) Cryptosystems with discretized chaotic maps. IEEE Trans Circuits Syst I Fundam Theory Appl 49:28–40. doi: 10.1109/81.974872 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Moumen A, Bouye M, Sissaoui H (2015) New secure partial encryption method for medical images using graph coloring problem. Nonlinear Dyn 82:1475–1482. doi: 10.1007/s11071-015-2253-4 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Nazeer M, Nargis B, Malik YM, Kim D-G (2013) A fresnelet-based encryption of medical images using arnold transform. Int J Adv Comput Sci Appl 4:131–140. doi: 10.14569/IJACSA.2013.040322 Google Scholar
  31. 31.
    Parvees MYM, Samath JA, Bose BP (2016) Secured medical images - a chaotic pixel scrambling approach. J Med Syst 40:232. doi: 10.1007/s10916-016-0611-5 CrossRefGoogle Scholar
  32. 32.
    Praveenkumar P, Amirtharajan R, Thenmozhi K, Balaguru Rayappan JB (2015) Medical data sheet in safe havens - a tri-layer cryptic solution. Comput Biol Med 62:264–276. doi: 10.1016/j.compbiomed.2015.04.031 CrossRefGoogle Scholar
  33. 33.
    Ravichandran D, Praveenkumar P, Balaguru Rayappan JB, Amirtharajan R (2016) Chaos based crossover and mutation for securing DICOM image. Comput Biol Med 72:170–184. doi: 10.1016/j.compbiomed.2016.03.020 CrossRefGoogle Scholar
  34. 34.
    Rehman AU, Liao XF, Kulsoom A, Abbas SA (2015) Selective encryption for gray images based on chaos and DNA complementary rules. Multimed Tools Appl 74:4655–4677. doi: 10.1007/s11042-013-1828-7 CrossRefGoogle Scholar
  35. 35.
    Tragos EZ, Zeadally S, Fragkiadakis AG, Siris VA (2013) Spectrum assignment in cognitive radio networks: a comprehensive survey. IEEE Commun Surveys Tuts 15:1108–1135. doi: 10.1109/SURV.2012.121112.00047 CrossRefGoogle Scholar
  36. 36.
    Troncoso-Pastoriza JR, Katzenbeisser S, Celik M (2007) Privacy preserving error resilient DNA searching through oblivious automata. In Proceedings of the 14th ACM conference on Computer and communications security (CCS '07). ACM, New York, NY, USA, 519–528. doi: 10.1145/1315245.1315309
  37. 37.
    Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:737–738 CrossRefGoogle Scholar
  38. 38.
    Zhang L, Liao X, Wang X (2005) An image encryption approach based on chaotic maps. Chaos, Solitons Fractals 24:759–765. doi: 10.1016/j.chaos.2004.09.035 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Zhen P, Zhao G, Min L, Jin X (2016) Chaos-based image encryption scheme combining DNA coding and entropy. Multimed Tools Appl 75:6303–6319. doi: 10.1007/s11042-015-2573-x CrossRefGoogle Scholar
  40. 40.
    Zheng Y, Jeon B, Xu D, Wu QMJ, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):961–973. doi: 10.3233/IFS-141378 Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Electrical & Electronics EngineeringSASTRA UniversityThanjavurIndia

Personalised recommendations