Skip to main content
Log in

Application of hyperspectral image anomaly detection algorithm for Internet of things

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Hyperspectral image(HSI) anomaly detection, as one of the hottest topics in current remote sensing information processing and image processing,has important theoretical value and has been widely used in military and civilian applications. Anomaly detection aims to detect and label small man-made abnormal targets or objects without any prior knowledge. In this paper, we proposed a segmented three-order Tucker decomposition for HSI anomaly detection. There are three major steps:1) the original HSI data is divided along the three dimensions into a grid of multiple of small-sized sub-tensors. 2)Tucker decomposition followed by anomaly detection algorithm is applied onto each sub-tensor. 3) the detection results from those sub-tensors are fused. Experiments reveal that the proposed method outperforms other current anomaly detectors with better detection performance. Finally, we introduce the application of hyperspectral image anomaly detection algorithm in the Internet of things(IOT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andersson CA, Henrion R (1999) A general algorithm for obtaining simple structure of core arrays in N-way PCA with application to fluorimetric data. Comput Statist Data Anal 31:255–278

    Article  Google Scholar 

  2. Bioucas-Dias JM, Plaza A, Camps-Valls G, Scheunders P, Nasrabadi N, Chanussot J (2013) Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci Remote Sens Mag 1(2):6–36

    Article  Google Scholar 

  3. Carlotte MJ (2005) A cluster-based approach for detecting man-made objects and changes in imagery. IEEE Trans Geosci Remote Sens 43(2):374–387

    Article  Google Scholar 

  4. Chang CI, Chiang SS (2002) Anomaly detection and classification for hyperspectral imagery. IEEE Trans Geosci Remote Sens 40(1):1314–1325

    Article  Google Scholar 

  5. Chang CI, Du Q (2004) Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans Geosci Remote Sens 42(3):608–619

    Article  Google Scholar 

  6. Chen SY, Yang S, Kalpakis K, Chang CI (2013) Low-rank decomposition-based anomaly detection, in Proc. SPIE Def., Secur., and Sens. Intern Soc Optics Photonics 87430N

  7. Du B, Zhang L (2011) Random selection based anomaly detector for hyperspectral imagery. IEEE Trans Geosci Remote Sens 49(5):1578–1585

    Article  Google Scholar 

  8. Fowler JE, Du Q (2012) Anomaly detection and reconstruction from random projections. IEEE Trans Image Process 21(1):184–195

    Article  MathSciNet  Google Scholar 

  9. Govender M, Chetty K, Bulcock H (2007) A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA (Pretoria) 33:145–151

    Google Scholar 

  10. Gupta A, Oberoi A (2015) A comparative analysis of tensor decomposition models using hyperspectral image. Inter J of Comput Sci Trends and Tech (IJCST) 3(2):5–11

    Google Scholar 

  11. Hsueh M, Chang CI (2004) Adaptive causal anomaly detection for hyperspectral imagery. In IEEE Intern Geosci Remote Sens Symp 5:3222–3224

    Google Scholar 

  12. Jia X (1996) Classification techniques for hyperspectral remote sensing image data, Ph.D. dissertation, Sch. Elect. Eng., Univ. College, ADFA, Univ. New South Wales

  13. Jia X, Richards JA (1994) Efficient maximum likelihood classification for imaging spectrometer data sets. IEEE Trans Geosci Remote Sensing 32:274–281

    Article  Google Scholar 

  14. Kerekes J (2008) Receiver operating characteristic curve confidence intervals and regions. IEEE Geosci Remote Sens Lett 5(2):251–255

    Article  Google Scholar 

  15. Khazai S, Homayouni S, Safari A, Mojaradi B (2011) Anomaly detection in hyperspectral images based on an adaptive support vector method. IEEE Geosci Remote Sens Lett 8(7):646–650

    Article  Google Scholar 

  16. Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500

    Article  MathSciNet  Google Scholar 

  17. Lathauwer LD (1997) Signal processing based on multilinear algebra. Katholike University Leuven, Leuven

    Google Scholar 

  18. Li W, Du Q (2015) Collaborative representation for hyperspectral anomaly detection. IEEE Trans Geosci Remote Sens 53(3):1463–1474

    Article  Google Scholar 

  19. Li J, Zhang H, Zhang L, Ma L (2015) Hyperspectral anomaly detection by the use of background joint sparse representation. IEEE J Sel Topics Appl Earth Observ Remote Sens 8(6):2523–2533

    Article  Google Scholar 

  20. Matteoli S (2013) Models and methods for automated background density estimation in hyperspectral anomaly detection. IEEE Trans Geosci Remote Sens 51(5):2837–2852

    Article  Google Scholar 

  21. Matteoli S, Acito N, Diani M, (2009) Local approach to orthogonal subspace-based target detection in hyperspectral images,” in Proc. of IEEE WHISPERS '09, 1–4

  22. Matteoli S, Diani M, Corsini G (2010) A tutorial overview of anomaly detection in hyperspectral images. IEEE Aerosp Electron Syst Mag 25(7):5–28

    Article  Google Scholar 

  23. Plaza A, Benediktsson JA, Boardman JW, Brazile J, Bruzzone L, Camps-Valls G et al (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 113:S110–S122

    Article  Google Scholar 

  24. Reed IS, Yu X (1990) Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans Acoust Speech Signal Process 38(4):1760–1770

    Article  Google Scholar 

  25. Schaum A (2009) Advanced hyperspectral detection based on elliptically contoured distribution models and operator feedback, in Proc. IEEE Appl. Imagery Pattern Recognit, Workshop (AIPR)

    Google Scholar 

  26. Schweizer SM, Moura JMF (2000) Hyperspectral imagery: clutter adaption in anomaly detection. IEEE Trans Inf Theory 46(5):1855–1871

    Article  Google Scholar 

  27. Stefanou MS, Kerekes JP (2009) A method for assessing spectral image utility. IEEE Trans Geosci Remote Sens 47(6):1698–1706

    Article  Google Scholar 

  28. Stein DWJ, Beaven SG, Hoff LE, Winter EM, Schaum AP, Stocker AD (2002) Anomaly detection from hyperspectral imagery. IEEE Signal Process Mag 19(1):58–69

    Article  Google Scholar 

  29. Zhang X, Wen G, Dai W (2016) A tensor decomposition-based anomaly detection algorithm for hyperspectral image[J]. IEEE Trans Geosci Remote Sens 54(10):1–20

    Article  Google Scholar 

  30. Zhao R, Du B, Zhang L (2014) A robust nonlinear hyperspectral anomaly detection approach. IEEE J Sel Topics Appl Earth Observ Remote Sens 7(4):1227–1234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Luo, G. & Tian, L. Application of hyperspectral image anomaly detection algorithm for Internet of things. Multimed Tools Appl 78, 5155–5167 (2019). https://doi.org/10.1007/s11042-017-4682-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4682-1

Keywords

Navigation