Multimedia Tools and Applications

, Volume 77, Issue 7, pp 7865–7881 | Cite as

On the design of a two-decoding-option image secret sharing scheme

  • Tzung-Her Chen
  • Kai-Siang Lin
  • Chih-Hung Lin


In an image secret sharing scheme (ISSS), two main categories are discussed. One is the polynomial-style image secret sharing scheme (PISSS), and the other is the visual secret sharing (VSS). It is interesting to combine the main properties of these two schemes. When the encoded secret images are received, we can decode them by combining these two schemes’ properties, utilizing the VSS property to seek the secret immediately by human visual system (HVS) and the PISSS property to recover the secret perfectly with a decoding machine. This paper combines PISSS and random grids-based VSS to remove all the drawbacks existing in the previous works including 1) distortion by compressing a secret image, 2) non-perfect reconstructed image, 3) distortion of pixel expansion, and 4) size-reduced halftone image. The experimental results demonstrate the proposed scheme does work well.


Visual cryptography Image secret sharing Polynomial-based secret sharing Lagrange interpolation Random grids 



The authors would like to thank the anonymous referees for their valuable discussions and comments. This research was partially supported by Ministry of Science and Technology, Taiwan, R.O.C., under contract no. MOST 105-2221-E-415 -012 -.


  1. 1.
    Ateniese G, Blundo C, De Santis A, Stinson DR (2001) Extended capabilities for visual cryptography. Theor Comput Sci 250(1–2):143–161MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chen TH, Tsao KH (2009) Visual secret sharing by random grids revisited. Pattern Recogn 42(9):2203–2217CrossRefzbMATHGoogle Scholar
  3. 3.
    Chen TH, Tsao KH (2011) Threshold visual secret sharing by random grids. J Syst Softw 84(7):1197–1208CrossRefGoogle Scholar
  4. 4.
    Chen TH, Lee YS, Lin CH (2016) On the difficulty of aligning VSS random grids. Signal Process Image Commun 44:101–107CrossRefGoogle Scholar
  5. 5.
    Cimato S, De Prisco R, De Santis A (2006) Probabilistic visual cryptography schemes. Comput J 49(1):97–107CrossRefzbMATHGoogle Scholar
  6. 6.
    Cimato S, De Prisco R, De Santis A (2007) Colored visual cryptography without color darkening. Theoretical Computer ScienceGoogle Scholar
  7. 7.
    Devi ES (2010) Enhanced visual secret sharing scheme via halftoning technique. Proceedings of international conference on communication control and computing technologies, pp 769–776Google Scholar
  8. 8.
    Elsheh E, Hamza AB (2011) Secret sharing approaches for 3D object encryption. Expert Syst Appl 38:3906–13911Google Scholar
  9. 9.
    Feng JB, Wu HC, Tsai CS, Chu YP (2005) A new multi-secret images sharing scheme using Largrange's interpolation. J Syst Softw 76(3):327–339CrossRefGoogle Scholar
  10. 10.
    Jin D, Yan WQ, Kankanhalli MS (2005) Progressive color visual cryptography. J Electron Imaging 14(3):033019CrossRefGoogle Scholar
  11. 11.
    Kafri O, Keren E (1987) Encryption of pictures and shaped by random grids. Opt Lett 12(6):377–379CrossRefGoogle Scholar
  12. 12.
    Lee YS, Wang BJ, Chen TH (2013) Quality-improved threshold visual secret sharing scheme by random grids. IET Image Process 7(2):137–143MathSciNetCrossRefGoogle Scholar
  13. 13.
    Li P, Ma PJ, Su XH, Yang CN (2012) Improvements of a two-in-one image secret sharing scheme based on gray mixing model. J Vis Commun Image Represent 23(3):441–453CrossRefGoogle Scholar
  14. 14.
    Li P, Yang CN, Kong Q, Ma Y, Liu Z (2013) Sharing more information in gray visual cryptography scheme. J Vis Commun Image Represent 24:1380–1393CrossRefGoogle Scholar
  15. 15.
    Li P, Yang CN, Kong Q (2016) A novel two-in-one image secret sharing scheme based on perfect black visual cryptography. J Real-Time Image Proc:1–10. doi: 10.1007/s11554-016-0621-z
  16. 16.
    Lin SJ, Lin JC (2007) VCPSS: a two-in-one two-decoding-options image sharing method combining visual cryptography (VC) and polynomial-style sharing (PSS) approaches. Pattern Recogn 40(12):3652–3666CrossRefzbMATHGoogle Scholar
  17. 17.
    Lin CC, Tsai WH (2004) Secret image sharing with steganography and authentication. J Syst Softw 73(3):405–414CrossRefGoogle Scholar
  18. 18.
    Lin CH, Lee YS, Chen TH (2015) Friendly progressive random-grid-based visual sec ret sharing with adaptive contrast. J Vis Commun Image Represent 34:45–51Google Scholar
  19. 19.
    Liu F, Wu CK, Lin XJ (2008) Color visual cryptography schemes. IET Inf Secur 2(4):151–165CrossRefGoogle Scholar
  20. 20.
    Naor M., Shamir A. (1995) Visual cryptography. Proceedings of Advances in Cryptology: Eurocrypt94, Lecture Notes in Computer Science, 950:1–12Google Scholar
  21. 21.
    Shamir A (1979) How to share a secret. Commun ACM 22(11):612–613MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Shyu SJ (2007) Image encryption by random grids. Pattern Recogn 40(3):1014–1031CrossRefzbMATHGoogle Scholar
  23. 23.
    Shyu SJ (2009) Image encryption by multiple random grids. Pattern Recogn 40(3):1014–1031CrossRefzbMATHGoogle Scholar
  24. 24.
    Thien CC (2003) An image-sharing method with user-friendly shadow images. IEEE Trans Circ Syst Video Technol 13(12):1161–1169CrossRefGoogle Scholar
  25. 25.
    Thien CC, Lin JC (2002) Secret image sharing. Comput Graph 26(5):765–770CrossRefGoogle Scholar
  26. 26.
    Yang CN (2004) New visual secret sharing schemes using probabilistic method. Pattern Recogn Lett 25:481–494CrossRefGoogle Scholar
  27. 27.
    Yang CN, Chen TS (2005) New size-reduced visual secret sharing schemes with half reduction of shadow size. Lect Notes Comput Sci 3480:19–28CrossRefGoogle Scholar
  28. 28.
    Yang CN, Ciou CB (2010) Image secret sharing method with two-decoding-options: lossless recovery and previewing capability. Image Vis Comput 28(12):1600–1610CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Computer Science and Information EngineeringNational Chiayi UniversityChia-Yi CityTaiwan
  2. 2.Graduate Institute of Mathematics and Science EducationNational Chiayi UniversityChiayi CountyTaiwan

Personalised recommendations