Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 7, pp 9153–9170 | Cite as

3D preservation of buildings – Reconstructing the past

  • Dieter Fritsch
  • Michael Klein
Article

Abstract

The digital reconstruction of buildings is a hot topic in many fields, such as archeology, architecture, civil engineering, computer vision, computer graphics, surveying, photogrammetry and many more. A variety of approaches has been developed and is currently used, in parallel and independent from each other. This paper will bridge the gap between architectural computer graphics using just photos and photogrammetry and laser scanning, which uses digital imagery to get high density coloured point clouds for 3D modelling. It starts with the workflow of laser scanning and photogrammetry and finally delivers 3D Virtual Reality models of buildings. On the other hand, those buildings can be augmented with 3D models reconstructed from old photos using architectural computer graphics to reconstruct the past. The validation and the automation of workflows brings together both disciplines, which will definitely benefit from each other.

Keywords

Laser scanning High Definition Surveying (HDS) Close-range photogrammetry Aerial photogrammetry Bundle block adjustment Structure-from-Motion (SfM) Dense image matching 3D reconstructions Rendered architecture 

References

  1. 1.
    Abdel-Wahab M, Wenzel K, Fritsch D (2011) Reconstruction of orientation and geometry from large unordered image datasets for low cost applications. Proceedings Workshop LC3D, BerlinGoogle Scholar
  2. 2.
    Abdel-Wahab M, Wenzel K, Fritsch D (2012) Automated and accurate orientation of large unordered image datasets for close-range cultural heritage data recording. Photogrammetrie – Fernerkundung – Geoinformation (PFG) 6:679–690CrossRefGoogle Scholar
  3. 3.
    Brenner C, Haala N (1998) Fast production of virtual reality City models. Int Archives Photogramm Remote Sens 32(4):77–84Google Scholar
  4. 4.
    Bustamante A (2013) Digital preservation of the Calw market by means of automated HDS and photogrammetric texture mapping. Master’s Thesis, Univ. Stuttgart (not published)Google Scholar
  5. 5.
    Danahy J (1999) Visualization data needs in urban environmental planning and design. In: Fritsch D, Spiller R (eds) Photogrammetric Week ‘99. Wichmann, Heidelberg, pp 351–365Google Scholar
  6. 6.
    Debevec P (1996) Modeling and rendering architecture from photographs. PhD Thesis, Univ. BerkelyGoogle Scholar
  7. 7.
    Farenzena M, Fusiello A, Gherardi R (2009) Structure and motion pipeline on a hierarchical cluster tree. ICCV Workshop on 3-D digital imaging and modeling, pp 1489–1496Google Scholar
  8. 8.
    Fritsch D (1999) Virtual cities and landscape models – what has photogrammetry to offer? In: Fritsch D, Spiller R (eds) Photogrammetric Week ‘99. Wichmann, Heidelberg, pp 3–14Google Scholar
  9. 9.
    Fritsch D (2016) Photogrammetrische Auswertung digitaler Bilder – Neue Methoden der Kamerakalibration, dichten Bildzuordnung und Interpretation von Punktwolken. In: Freeden W, Rummel R, Heipke C (eds) Handbuch der Geodaesie – Photogrammetrie und Fernerkundung. Springer, Berlin, 40pGoogle Scholar
  10. 10.
    Fritsch D, Becker S, Rothermel M (2013) Modeling facade structures using point clouds from dense image matching. Proceed. Intl. Conf. Advances in civil, structural and mechanical engineering. Inst. Research Eng. & Doctors, Hong Kong, pp 57–64Google Scholar
  11. 11.
    Gibson S, Cook J, Howard T, Hubbold R, Oram D (2002) Accurate camera calibration for off-line, video-based augmented reality. IEEE and ACM Int’l Symp. Mixed and augmented reality, pp 37-46Google Scholar
  12. 12.
    Gill L, Lange E (2015) Getting virtual 3D landscapes out of the lab. Comput Environ Urban Syst. doi: 10.1016/j.compenvurbs.2015.09.012 Google Scholar
  13. 13.
    Haala N, Kada M (2010) An update on automatic 3D building reconstruction. ISPRS J Photogramm Remote Sens 65:570–580CrossRefGoogle Scholar
  14. 14.
    Hirschmueller H (2005) Accurate and efficient stereo processing by semi global matching and mutual information. Proceed. IEEE conference for computer vision and Pattern recognition, Vol. 2, pp. 807-814, San Diego, USAGoogle Scholar
  15. 15.
    Hirschmueller H (2008) Stereo processing by semi-global matching and mutual information. IEEE Trans Pattern Anal Mach Intell 30(2):328–341CrossRefGoogle Scholar
  16. 16.
    itseez (2015) OpenCV – open source computer vision. Url: http://www.opencv.org
  17. 17.
    Kada M (2009) The 3D Berlin project. In: Fritsch D (ed) Photogrammetric Week ‘09. Wichmann, Heidelberg, pp 331–340Google Scholar
  18. 18.
    Klopschitz M, Irschara A, Reitmayr G, Schmalstieg D (2010) Robust incremental structure from motion. Proc. 3DPVTGoogle Scholar
  19. 19.
    Moussa W (2014) Integration of digital photogrammetry and terrestrial laser scanning for cultural heritage data recording. PhD Thesis, Inst. Photogrammetry, Univ. Stuttgart, Deutsche Geod. Komm., Series C, Munich. URL: http://www.ifp.uni-stuttgart.de/publications/dissertationen
  20. 20.
    Moussa W, Abdel-Wahab M, Fritsch D (2012) An automated procedure for combining digital images and laser scanner data. Int. archives of the photogrammetry, Remote Sensing and spatial information sciences, Vol. XXXIX-B5, 229-234.Google Scholar
  21. 21.
    Nistér D (2000) Reconstruction from uncalibrated sequences with a hierarchy of trifocal tensor. Proc. European Conf. Computer vision, pp 649-663Google Scholar
  22. 22.
    Photometrix (2015) Australis. URL: http://photometrix.com.au
  23. 23.
    Rothermel M (2017) Development of a SGM-based multi-view reconstruction framework for aerial imagery. Inst. Photogrammetry, Univ. Stuttgart, PhD Thesis, Deutsche Geodaetische Kommission, Reihe C, Munich. URL: http://www.ifp.uni-stuttgart/publications/dissertationen
  24. 24.
    Rothermel M, Wenzel K, Fritsch D, Haala N (2012) SURE: photogrammetric surface reconstruction from imagery. Proceedings LC3D Workshop BerlinGoogle Scholar
  25. 25.
    Snavely N, Seitz SM, Szeliski R (2006) Photo tourism: exploring photo collections in 3D. ACM Trans Graphics (TOG) 25:835–846CrossRefGoogle Scholar
  26. 26.
    Tutzauer P, Klein M (2015) The 4D-CH Calw project – Spatio-temporal Modelling of photogrammetry and computer graphics. In: Ed. D. Fritsch, photogrammetric Week ‘15. Wichmann, Berlin, pp. 207-211.Google Scholar
  27. 27.
    Verma V, Kumar R, Hsu S (2006) 3D Building Detection and Modeling from Aerial LiDAR Data. Proceed. In: 2006 I.E. computer society conference on computer vision and Pattern recognition, CVPR’06. IEEE Computer Society, Washington DC, pp 2213–2220Google Scholar
  28. 28.
    Vosselman G (2012) Automated Planimetric quality control in high accuracy airborne laser scanning surveys. ISPRS J Photogramm Remote Sens 74:90–100CrossRefGoogle Scholar
  29. 29.
    Wenzel K (2016) Dense image matching for close range photogrammetry. Inst. Photogrammetry, Univ. Stuttgart, PhD Thesis, 123p, Stuttgart. URL: http://www.ifp.uni-stuttgart.de/publications/dissertationen
  30. 30.
    Wenzel, K., Rothermel, M., Haala, N., Fritsch, D., 2013. Image acquisition and model selection for multi-view stereo. Int. arch. Photogrammetry, Remote Sensing, spatial Information Sciences, XL-5/W1, pp. 251–259.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute for PhotogrammetryUniversity of StuttgartStuttgartGermany
  2. 2.7reasons GmbHViennaAustria

Personalised recommendations