Skip to main content
Log in

Improved spectral clustering based on Nyström method

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Spectral graph clustering methods have been a hot topic in the field of image segmentation. However, because the computational demands are needed for Spectral graph clustering methods, it has been severely limited to apply them into large data sets, such as high resolution image. It would be too expensive or even impractical for spectral decomposition to provide the optimal approximation in dealing with large or high-dimensional datasets. A novel approach aiming at reducing the computational requirements is proposed in this paper. Our approach focuses on Nyström method for the solution of eigen-function problems. This approach enables us to use a small number of samples to infer the overall clustering solution. Based on the proposed Nyström sampling method, this paper presents a spectral clustering algorithm for massive data analysis, and the experiments show the method is both feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high-dimensional data for data mining applications. ACM SIGMOD 27(2):94–105

    Article  Google Scholar 

  2. Bach FR, Jordan MI (2005) Blind one-microphone speech separation: A spectral learning approach. In: Saul LK, Weiss Y, Bottou L (eds) Advances in Neural Information Processing Systems, vol 17. MIT Press, Cambridge, pp 65–72

    Google Scholar 

  3. Belabbas M-A, Wolfe PJ (2009) Spectral methods in machine learning and new strategies for very large datasets. Proc Nat Acad Sci USA 51(6):369–374

    Article  Google Scholar 

  4. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithm [M]. Plenum, New York

    Book  MATH  Google Scholar 

  5. Chen B, Shu H (2015) Color image analysis by quaternion-type moments. J Math Imaging Vision 51(1):124

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding CHQ, He X, Zha H, Gu M, Simon HD (2001) A min-max cut algorithm for graph partitioning and data clustering. In Proceedings of ICDM

  7. Drineas P, Mahoney MW (2005) On the Nyström method for approximating a gram matrix for improved kernel-based learning. J Mach Learn Res 6:2153–2175

    MathSciNet  MATH  Google Scholar 

  8. Ester M, Kriegel HP, Sander J (1996) A density based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining (KDD296). ACM Press, Portland, pp 226–231

  9. Farahat AK, Ghodsi A, Kamel M (2011) A novel greedy algorithm for Nyström approximation. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR, Fort Lauderdale, USA, pp 269–277

  10. Fowlkes C, Belongie S, Fan RK, Chung, Malik J (2004) Spectral grouping using Nyström methods. IEEE Trans. Pattern Anal. Mach. Intell 26(2):214–225

    Article  MATH  Google Scholar 

  11. Frieze A, Kannan R, Vempala S (2004) Fast Monte-Carlo algorithms for finding low-rank approximations. J ACM 51:1025–1041. doi:10.1145/1039488.1039494

    Article  MathSciNet  MATH  Google Scholar 

  12. Gu B, Sheng VS (2016) A robust regularization path algorithm for -support vector classification. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2527796

    Google Scholar 

  13. Hagen L, Kahng A (1992) New spectral methods for ratio cut partitioning and clustering. IEEE Trans Comput-Aided Des Integr Circuits Syst 11(9):1074–1085

    Article  Google Scholar 

  14. Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis. John Wiley and Sons, New York

    Book  MATH  Google Scholar 

  15. Kumar S, Mohri M, Talwalkar A (2012) Sampling methods for the Nyström method. J Mach Learn Res 13(Apr. 2012):981–1006

    MathSciNet  MATH  Google Scholar 

  16. Lin M, Wang F, Zhang C (2015) Large-scale eigenvector approximation via Hilbert space embedding Nyström. Pattern Recognit 48(5):1904–1912

    Article  Google Scholar 

  17. Liu J, Wang C, Danilevsky M, Han J (2013) Large-scale spectral clustering on graphs. In Proceedings of the International Joint Conference on Artificial Intelligence. Morgan Kaufmann, Beijing, pp 1486–1492

    Google Scholar 

  18. Luxburg UV (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  19. Ng RT, Han J (2002) CLARANS:a method for clustering objects for spatial data mining. IEEE Trans Knowl Data Eng 14(5):1003–1016

    Article  Google Scholar 

  20. Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: analysis and an algorithm. In Proceedings of NIPS. MIT Press, Cambridge, pp 849–856

  21. Nie W, Liu A, Su Y (2016) 3D object retrieval based on sparse coding in weak supervision. J Vis Commun Image Represent 37(C):40–45

  22. Nie W, Liu A, Gao Z, Su Y (2015) Clique-graph matching by Preserving global & local structure. Proc. IEEE Conf Comput Vis Pattern Recognit. IEEE 4503–4510

  23. Nie W, Liu A, Li W, Su Y (2016) Cross-view action recognition by cross-domain learning. Image Vis Comput 55:109–118

    Article  Google Scholar 

  24. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  25. Talwalkar A, Kumar S, Rowley H (2008) Large-scale manifold learning. Proc IEEE Conf Comput Vis Pattern Recognit. IEEE 1–8. doi:10.1109/CVPR.2008.4587670

  26. Wang L, Bezdek JC, Leckie C, Kotagirl R (2008) Selective sampling for approximate clustering of very large data sets. Int’l. J Intell Syst 23(3):313–331. doi:10.1002/int.20268

    Article  MATH  Google Scholar 

  27. Wang W, Yan Y, Zhang L, Hong R, Sebe N (2016) Collaborative sparse coding for Multiview action recognition. IEEE Multimedia 23(4):80–87

    Article  Google Scholar 

  28. Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295:395–406

    Article  Google Scholar 

  29. Williams CKI, Seeger M (2000) Using the Nyström method to speed up kernel machines. Proceedings of NIPS, pages 682–688

  30. Zadeh LA (1998) Fuzzy logic. IEEE Trans on Control System Magazine 1:83–93

    Google Scholar 

  31. Zhang K, Kwok JT (2010) Clustered Nyström method for large scale manifold learning and dimension reduction. IEEE Trans. on Neural Networks 21(10):1576–1587. doi:10.1109/TNN.2010.2064786

    Article  Google Scholar 

  32. Zhang T, Ramakrishnan R, Livny M (1996) BirCH:an efficient data clustering method for very large databases. In: Proceedings of the ACM SIGMOD Conference, Montreal, Canada, pp 103–114

  33. Zhang K, Tsang IW, Kwok JT (2008a) Improved Nyström low-rank approximation and error analysis. In: Proceedings of the 25th international conference on machine learning, pp 1232–1239. doi:10.1145/1390156.1390311

Download references

Acknowledgements

This work was supported in part by a grant from the National Basic Research Program of China (No.2012CB720702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Q., Mao, Y. Improved spectral clustering based on Nyström method. Multimed Tools Appl 76, 20149–20165 (2017). https://doi.org/10.1007/s11042-017-4566-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4566-4

Keywords

Navigation