Skip to main content
Log in

Efficient music recommender system using context graph and particle swarm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Music recommender systems is an important field of research because of easy availability and use of online music. The most existing models only focus on explicit data like ratings and other user-item dimensions. A challenging problem in music recommendation is to model a variety of contextual information, such as feedback, time and location. In this article, we proposed a competent hybrid music recommender system (HMRS), which works on context and collaborative approaches. The timestamp is extracted from users listening log to construct a decision context behavior that extracted various temporal features like a week, sessions(as morning, evening or night). We used depth-first-search (DFS) algorithm which traverses the whole graph through the paths in different contexts. Bellman-Ford algorithm provides ranked list of recommended items with multi-layer context graph. We enhanced the process using particle swarm optimization (PSO) which produced highly optimized results. The dataset is used from Last.fm which contains 19,150,868 music listening logs of 992 users (till May, 4th 2009). We extract the properties of music from user’s listening history and evaluate the efficient system to recommend music based on user’s contextual preferences. Our system noticeably delivers the best recommendations regarding recall results when compared to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. Adapt Web 69:253–260. doi:10.1007/978-3-540-72079-9_9

    Google Scholar 

  2. Alqadah F, Reddy CK, Hu J, Alqadah HF (2015) Biclustering neighborhood-based collaborative filtering method for top-n recommender systems. Knowl Inf Syst 44:475–491. doi:10.1007/s10115-014-0771-x

    Article  Google Scholar 

  3. Awerbuch B, Noy Bar A (1994) Approximate distributed Bellman-Ford algorithms. IEEE Trans Commun 42:2515–2519. doi:10.1109/26.310604

  4. Bobadilla J, Ortega F, Hernando A, Gutiérrez A (2013) Recommender systems survey. Knowledge-Based Syst 46:109–132. doi:10.1016/j.knosys.2013.03.012

    Article  Google Scholar 

  5. Chen S, Wang G, Jia W (2015a) κ-FuzzyTrust: efficient trust computation for large-scale mobile social networks using a fuzzy implicit social graph. Inf Sci (Ny) 318:123–143. doi:10.1016/j.ins.2014.09.058

    Article  MathSciNet  Google Scholar 

  6. Chen L, Chen G, Wang F (2015b) Recommender systems based on user reviews: the state of the art. User Model User-adapt Interact 25:99–154. doi:10.1007/s11257-015-9155-5

    Article  MathSciNet  Google Scholar 

  7. Chen H, Li Z, Hu W (2015c) An improved collaborative recommendation algorithm based on optimized user similarity. J Supercomput. doi:10.1007/s11227-015-1518-5

    Google Scholar 

  8. Christensen I, Schiaffino S (2013) Matrix factorization in social group recommender systems. In: 12th Mexican International Conference on Artificial Intelligence, pp. 10–16

  9. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to Algorithms. doi:10.1163/9789004256064_hao_introduction

  10. Diaz-Aviles E, Nejdl W, Schmidt-Thieme L (2009) Swarming to rank for information retrieval. Proc 11th Annu Conf Genet Evol Comput 9–16. doi:10.1145/1569901.1569904

  11. Elmisery AM, Rho S, Botvich D (2015) Privacy-enhanced middleware for location-based sub-community discovery in implicit social groups. J Supercomput. doi:10.1007/s11227-015-1574-x

    Google Scholar 

  12. Goldberg AV, Radzik T (1993) A heuristic improvement of he Bellman-Ford algorithm. Appl Math Lett 6:3–6. doi:10.1016/0893-9659(93)90022-F

  13. Gong Y-J, Chen W-N, Zhan Z-H et al (2015) Distributed evolutionary algorithms and their models: a survey of the state-of-the-art. Appl Soft Comput 34:286–300. doi:10.1016/j.asoc.2015.04.061

    Article  Google Scholar 

  14. Guo L, Ma J, Chen Z, Zhong H (2014) Learning to recommend with social contextual information from implicit feedback. Soft Comput 19:1351–1362. doi:10.1007/s00500-014-1347-0

    Article  Google Scholar 

  15. Huang Z, Zeng D, Chen H (2007) A comparison of collaborative-filtering algorithms for E-commerce. IEEE Intell Syst 22:68–78. doi:10.1109/MIS.2007.80

    Article  Google Scholar 

  16. Hwang W-S, Lee H-J, Kim S-W et al (2015) Efficient recommendation methods using category experts for a large dataset. Inf Fusion 28:75–82. doi:10.1016/j.inffus.2015.07.005

    Article  Google Scholar 

  17. Jiang M, Cui P, Wang F et al. (2014) Scalable recommendation with social contextual information. IEEE Trans Knowl Data Eng 26:2789–2802. doi:10.1109/TKDE.2014.2300487

  18. Katarya R, Verma OP (2016a) Recent developments in affective recommender systems. Phys A Stat Mech Appl 461:182–190. doi:10.1016/j.physa.2016.05.046

    Article  Google Scholar 

  19. Katarya R, Verma OP (2016b) A collaborative recommender system enhanced with particle swarm optimization technique. Multimed Tools Appl 75:1–15. doi:10.1007/s11042-016-3481-4

    Article  Google Scholar 

  20. Katarya R, Verma OP (2016c) An effective web page recommender system with fuzzy c-mean clustering. Multimed Tools Appl. doi:10.1007/s11042-016-4078-7

    Google Scholar 

  21. Katarya R, Verma OP (2016d) An effective collaborative movie recommender system with cuckoo search. Egypt Informatics J. doi:10.1016/j.eij.2016.10.002

    Google Scholar 

  22. Katarya R, Verma OP (2016e) Recommender system with grey wolf optimizer and FCM. Neural Comput & Applic. doi:10.1007/s00521-016-2817-3

    Google Scholar 

  23. Kim HN, Bloess M, El Saddik A (2013) Folkommender: a group recommender system based on a graph-based ranking algorithm. Multimedia Systems 19:509–525. doi:10.1007/s00530-012-0298-5

    Article  Google Scholar 

  24. Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems. Computer (Long Beach Calif) 42:30–37

    Google Scholar 

  25. Lee W-P, Ma C-Y (2016) Enhancing collaborative recommendation performance by combining user preference and trust-distrust propagation in social networks. Knowledge-Based Syst 106:125–134. doi:10.1016/j.knosys.2016.05.037

    Article  Google Scholar 

  26. Mao K, Chen G, Hu Y, Zhang L (2016) Music recommendation using graph based quality model. Signal Process 120:1–8. doi:10.1016/j.sigpro.2015.03.026

    Article  Google Scholar 

  27. Maurus S, Plant C (2015) Ternary matrix factorization: problem definitions and algorithms. Knowl Inf Syst. doi:10.1007/s10115-015-0838-3

    Google Scholar 

  28. Najafabadi MK, Mahrin MN (2015) A systematic literature review on the state of research and practice of collaborative filtering technique and implicit feedback. Artif Intell Rev. doi:10.1007/s10462-015-9443-9

    Google Scholar 

  29. Pazzani MJ, Billsus D (2007) Content-based recommendation systems. Adapt Web 4321:325–341. doi:10.1007/978-3-540-72079-9

    Article  Google Scholar 

  30. Pirasteh P, Hwang D, Jung JJ (2015) Exploiting matrix factorization to asymmetric user similarities in recommendation systems. Knowledge-Based Syst 83:51–57. doi:10.1016/j.knosys.2015.03.006

    Article  Google Scholar 

  31. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1:33–57. doi:10.1007/s11721-007-0002-0

    Article  Google Scholar 

  32. Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. Proc 10th … 1:285–295. doi:10.1145/371920.372071

    Google Scholar 

  33. Shi YUE, Larson M, Hanjalic A (2014) Collaborative filtering beyond the user-item matrix : a survey of the state of the art and future challenges. ACM Comput Surv 47:1–45

    Article  Google Scholar 

  34. Su X, Khoshgoftaar TM (2009) A survey of collaborative filtering techniques. Adv Artif Intell 2009:1–19

    Article  Google Scholar 

  35. Systems C, Wang J, Li H, Zhao H (2013) The contextual group recommendation. 2013 5th International Conference on Intelligent Networking and Collaborative Systems. doi:10.1109/INCoS.2013.27

  36. Thakkar S, Bhosale S, Gawade N, Mehta PS (2015) Proposed advance taxi recommender system based on a spatiotemporal factor analysis model. International Journal of Application or Innovation in Engineering & Management (IJAIEM) 4:161–166

  37. Tkalčič M, Burnik U, Košir A (2010) Using affective parameters in a content-based recommender system for images. User Model User-Adapted Interact 20:279–311. doi:10.1007/s11257-010-9079-z

    Article  Google Scholar 

  38. Ujjin S, Bentley PJ (2003) Particle swarm optimization recommender system. Proc 2003 I.E. Swarm Intell Symp SIS’03 (Cat No03EX706):124–131. doi:10.1109/SIS.2003.1202257

  39. Vanattenhoven J, Geerts D (2015) Contextual aspects of typical viewing situations: a new perspective for recommending television and video content. Pers Ubiquit Comput 19:761–779. doi:10.1007/s00779-015-0861-0

    Article  Google Scholar 

  40. Wang M, Hua XS, Hong R et al (2009) Unified video annotation via multigraph learning. IEEE Trans Circuits Syst Video Technol 19:733–746. doi:10.1109/TCSVT.2009.2017400

    Article  Google Scholar 

  41. Wang J, Vries AP, De Reinders MJT (2006) Unifying user-based and item-based collaborative filtering approaches by similarity fusion categories and subject descriptors. Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. doi:10.1145/1148170.1148257

  42. Xu Y, Yin J (2015) Collaborative recommendation with user generated content. Eng Appl Artif Intell 45:281–294. doi:10.1016/j.engappai.2015.07.012

    Article  Google Scholar 

  43. Yao W, He J, Huang G et al (2015) A graph-based model for context-aware recommendation using implicit feedback data. World Wide Web 18:1351–1371. doi:10.1007/s11280-014-0307-z

    Article  Google Scholar 

  44. Yin H, Cui BIN, Chen L et al. (2015) Modeling location-based user rating profiles for personalized. ACM Trans Knowl Discov Data (TKDD) 9:1–41. doi:10.1145/2663356

  45. Yuan T, Cheng J, Zhang X et al (2015) How friends affect user behaviors? An exploration of social relation analysis for recommendation. Knowledge-Based Syst. doi:10.1016/j.knosys.2015.08.005

    Google Scholar 

  46. Zhao S, Yao H, Sun X (2013) Video classification and recommendation based on affective analysis of viewers. Neurocomputing 119:101–110. doi:10.1016/j.neucom.2012.04.042

    Article  Google Scholar 

  47. Zhao S, Yao H, Wang F et al (2014) Emotion based image musicalization. IEEE Int Conf Multimed Expo Work ICMEW. doi:10.1109/ICMEW.2014.6890565

    Google Scholar 

  48. Zhao S, Yao H, Zhang Y et al (2015a) View-based 3D object retrieval via multi-modal graph learning. Signal Process 112:110–118. doi:10.1016/j.sigpro.2014.09.038

    Article  Google Scholar 

  49. Zhao W, Guan Z, Liu Z (2015b) Ranking on heterogeneous manifolds for tag recommendation in social tagging services. Neurocomputing 148:521–534. doi:10.1016/j.neucom.2014.07.011

    Article  Google Scholar 

  50. Zhao D, Zhang L, Zhao W (2016) Genre-based link prediction in bipartite graph for music recommendation. Procedia Comput Sci 91:959–965. doi:10.1016/j.procs.2016.07.121

    Article  Google Scholar 

  51. Zhou W, Duan W, Piramuthu S (2014) AC a social network matrix for implicit and explicit. Decis Support Syst. doi:10.1016/j.dss.2014.09.006

    Google Scholar 

  52. Zhu T, Ren Y, Zhou W et al (2014) An effective privacy preserving algorithm for neighborhood-based collaborative filtering. Futur Gener Comput Syst 36:142–155. doi:10.1016/j.future.2013.07.019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Katarya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katarya, R., Verma, O.P. Efficient music recommender system using context graph and particle swarm. Multimed Tools Appl 77, 2673–2687 (2018). https://doi.org/10.1007/s11042-017-4447-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4447-x

Keywords

Navigation