Abstract
Music recommender systems is an important field of research because of easy availability and use of online music. The most existing models only focus on explicit data like ratings and other user-item dimensions. A challenging problem in music recommendation is to model a variety of contextual information, such as feedback, time and location. In this article, we proposed a competent hybrid music recommender system (HMRS), which works on context and collaborative approaches. The timestamp is extracted from users listening log to construct a decision context behavior that extracted various temporal features like a week, sessions(as morning, evening or night). We used depth-first-search (DFS) algorithm which traverses the whole graph through the paths in different contexts. Bellman-Ford algorithm provides ranked list of recommended items with multi-layer context graph. We enhanced the process using particle swarm optimization (PSO) which produced highly optimized results. The dataset is used from Last.fm which contains 19,150,868 music listening logs of 992 users (till May, 4th 2009). We extract the properties of music from user’s listening history and evaluate the efficient system to recommend music based on user’s contextual preferences. Our system noticeably delivers the best recommendations regarding recall results when compared to existing methods.
Similar content being viewed by others
References
Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. Adapt Web 69:253–260. doi:10.1007/978-3-540-72079-9_9
Alqadah F, Reddy CK, Hu J, Alqadah HF (2015) Biclustering neighborhood-based collaborative filtering method for top-n recommender systems. Knowl Inf Syst 44:475–491. doi:10.1007/s10115-014-0771-x
Awerbuch B, Noy Bar A (1994) Approximate distributed Bellman-Ford algorithms. IEEE Trans Commun 42:2515–2519. doi:10.1109/26.310604
Bobadilla J, Ortega F, Hernando A, Gutiérrez A (2013) Recommender systems survey. Knowledge-Based Syst 46:109–132. doi:10.1016/j.knosys.2013.03.012
Chen S, Wang G, Jia W (2015a) κ-FuzzyTrust: efficient trust computation for large-scale mobile social networks using a fuzzy implicit social graph. Inf Sci (Ny) 318:123–143. doi:10.1016/j.ins.2014.09.058
Chen L, Chen G, Wang F (2015b) Recommender systems based on user reviews: the state of the art. User Model User-adapt Interact 25:99–154. doi:10.1007/s11257-015-9155-5
Chen H, Li Z, Hu W (2015c) An improved collaborative recommendation algorithm based on optimized user similarity. J Supercomput. doi:10.1007/s11227-015-1518-5
Christensen I, Schiaffino S (2013) Matrix factorization in social group recommender systems. In: 12th Mexican International Conference on Artificial Intelligence, pp. 10–16
Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to Algorithms. doi:10.1163/9789004256064_hao_introduction
Diaz-Aviles E, Nejdl W, Schmidt-Thieme L (2009) Swarming to rank for information retrieval. Proc 11th Annu Conf Genet Evol Comput 9–16. doi:10.1145/1569901.1569904
Elmisery AM, Rho S, Botvich D (2015) Privacy-enhanced middleware for location-based sub-community discovery in implicit social groups. J Supercomput. doi:10.1007/s11227-015-1574-x
Goldberg AV, Radzik T (1993) A heuristic improvement of he Bellman-Ford algorithm. Appl Math Lett 6:3–6. doi:10.1016/0893-9659(93)90022-F
Gong Y-J, Chen W-N, Zhan Z-H et al (2015) Distributed evolutionary algorithms and their models: a survey of the state-of-the-art. Appl Soft Comput 34:286–300. doi:10.1016/j.asoc.2015.04.061
Guo L, Ma J, Chen Z, Zhong H (2014) Learning to recommend with social contextual information from implicit feedback. Soft Comput 19:1351–1362. doi:10.1007/s00500-014-1347-0
Huang Z, Zeng D, Chen H (2007) A comparison of collaborative-filtering algorithms for E-commerce. IEEE Intell Syst 22:68–78. doi:10.1109/MIS.2007.80
Hwang W-S, Lee H-J, Kim S-W et al (2015) Efficient recommendation methods using category experts for a large dataset. Inf Fusion 28:75–82. doi:10.1016/j.inffus.2015.07.005
Jiang M, Cui P, Wang F et al. (2014) Scalable recommendation with social contextual information. IEEE Trans Knowl Data Eng 26:2789–2802. doi:10.1109/TKDE.2014.2300487
Katarya R, Verma OP (2016a) Recent developments in affective recommender systems. Phys A Stat Mech Appl 461:182–190. doi:10.1016/j.physa.2016.05.046
Katarya R, Verma OP (2016b) A collaborative recommender system enhanced with particle swarm optimization technique. Multimed Tools Appl 75:1–15. doi:10.1007/s11042-016-3481-4
Katarya R, Verma OP (2016c) An effective web page recommender system with fuzzy c-mean clustering. Multimed Tools Appl. doi:10.1007/s11042-016-4078-7
Katarya R, Verma OP (2016d) An effective collaborative movie recommender system with cuckoo search. Egypt Informatics J. doi:10.1016/j.eij.2016.10.002
Katarya R, Verma OP (2016e) Recommender system with grey wolf optimizer and FCM. Neural Comput & Applic. doi:10.1007/s00521-016-2817-3
Kim HN, Bloess M, El Saddik A (2013) Folkommender: a group recommender system based on a graph-based ranking algorithm. Multimedia Systems 19:509–525. doi:10.1007/s00530-012-0298-5
Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems. Computer (Long Beach Calif) 42:30–37
Lee W-P, Ma C-Y (2016) Enhancing collaborative recommendation performance by combining user preference and trust-distrust propagation in social networks. Knowledge-Based Syst 106:125–134. doi:10.1016/j.knosys.2016.05.037
Mao K, Chen G, Hu Y, Zhang L (2016) Music recommendation using graph based quality model. Signal Process 120:1–8. doi:10.1016/j.sigpro.2015.03.026
Maurus S, Plant C (2015) Ternary matrix factorization: problem definitions and algorithms. Knowl Inf Syst. doi:10.1007/s10115-015-0838-3
Najafabadi MK, Mahrin MN (2015) A systematic literature review on the state of research and practice of collaborative filtering technique and implicit feedback. Artif Intell Rev. doi:10.1007/s10462-015-9443-9
Pazzani MJ, Billsus D (2007) Content-based recommendation systems. Adapt Web 4321:325–341. doi:10.1007/978-3-540-72079-9
Pirasteh P, Hwang D, Jung JJ (2015) Exploiting matrix factorization to asymmetric user similarities in recommendation systems. Knowledge-Based Syst 83:51–57. doi:10.1016/j.knosys.2015.03.006
Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1:33–57. doi:10.1007/s11721-007-0002-0
Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. Proc 10th … 1:285–295. doi:10.1145/371920.372071
Shi YUE, Larson M, Hanjalic A (2014) Collaborative filtering beyond the user-item matrix : a survey of the state of the art and future challenges. ACM Comput Surv 47:1–45
Su X, Khoshgoftaar TM (2009) A survey of collaborative filtering techniques. Adv Artif Intell 2009:1–19
Systems C, Wang J, Li H, Zhao H (2013) The contextual group recommendation. 2013 5th International Conference on Intelligent Networking and Collaborative Systems. doi:10.1109/INCoS.2013.27
Thakkar S, Bhosale S, Gawade N, Mehta PS (2015) Proposed advance taxi recommender system based on a spatiotemporal factor analysis model. International Journal of Application or Innovation in Engineering & Management (IJAIEM) 4:161–166
Tkalčič M, Burnik U, Košir A (2010) Using affective parameters in a content-based recommender system for images. User Model User-Adapted Interact 20:279–311. doi:10.1007/s11257-010-9079-z
Ujjin S, Bentley PJ (2003) Particle swarm optimization recommender system. Proc 2003 I.E. Swarm Intell Symp SIS’03 (Cat No03EX706):124–131. doi:10.1109/SIS.2003.1202257
Vanattenhoven J, Geerts D (2015) Contextual aspects of typical viewing situations: a new perspective for recommending television and video content. Pers Ubiquit Comput 19:761–779. doi:10.1007/s00779-015-0861-0
Wang M, Hua XS, Hong R et al (2009) Unified video annotation via multigraph learning. IEEE Trans Circuits Syst Video Technol 19:733–746. doi:10.1109/TCSVT.2009.2017400
Wang J, Vries AP, De Reinders MJT (2006) Unifying user-based and item-based collaborative filtering approaches by similarity fusion categories and subject descriptors. Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. doi:10.1145/1148170.1148257
Xu Y, Yin J (2015) Collaborative recommendation with user generated content. Eng Appl Artif Intell 45:281–294. doi:10.1016/j.engappai.2015.07.012
Yao W, He J, Huang G et al (2015) A graph-based model for context-aware recommendation using implicit feedback data. World Wide Web 18:1351–1371. doi:10.1007/s11280-014-0307-z
Yin H, Cui BIN, Chen L et al. (2015) Modeling location-based user rating profiles for personalized. ACM Trans Knowl Discov Data (TKDD) 9:1–41. doi:10.1145/2663356
Yuan T, Cheng J, Zhang X et al (2015) How friends affect user behaviors? An exploration of social relation analysis for recommendation. Knowledge-Based Syst. doi:10.1016/j.knosys.2015.08.005
Zhao S, Yao H, Sun X (2013) Video classification and recommendation based on affective analysis of viewers. Neurocomputing 119:101–110. doi:10.1016/j.neucom.2012.04.042
Zhao S, Yao H, Wang F et al (2014) Emotion based image musicalization. IEEE Int Conf Multimed Expo Work ICMEW. doi:10.1109/ICMEW.2014.6890565
Zhao S, Yao H, Zhang Y et al (2015a) View-based 3D object retrieval via multi-modal graph learning. Signal Process 112:110–118. doi:10.1016/j.sigpro.2014.09.038
Zhao W, Guan Z, Liu Z (2015b) Ranking on heterogeneous manifolds for tag recommendation in social tagging services. Neurocomputing 148:521–534. doi:10.1016/j.neucom.2014.07.011
Zhao D, Zhang L, Zhao W (2016) Genre-based link prediction in bipartite graph for music recommendation. Procedia Comput Sci 91:959–965. doi:10.1016/j.procs.2016.07.121
Zhou W, Duan W, Piramuthu S (2014) AC a social network matrix for implicit and explicit. Decis Support Syst. doi:10.1016/j.dss.2014.09.006
Zhu T, Ren Y, Zhou W et al (2014) An effective privacy preserving algorithm for neighborhood-based collaborative filtering. Futur Gener Comput Syst 36:142–155. doi:10.1016/j.future.2013.07.019
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Katarya, R., Verma, O.P. Efficient music recommender system using context graph and particle swarm. Multimed Tools Appl 77, 2673–2687 (2018). https://doi.org/10.1007/s11042-017-4447-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-017-4447-x