Joint optimization and perceptual boosting of global and local contrast for efficient contrast enhancement


Contrast enhancement which aims to increase the contrast of an image with low dynamic range, has been widely studied and exploited. In spite of the great success of many contrast enhancement algorithms, they still have difficulty in achieving both global and local contrast enhancement so that some over-enhancement, under-enhancement or even halo artifacts are often produced in complex images. This paper proposes a simple but efficient contrast enhancement method which may achieve both global and local contrast enhancement and perceptually suppress the above-mentioned problems. A cost function integrating global enhancement with local contrast enhancement is firstly constructed to pose image enhancement as an optimization problem. Then, two key steps are involved in solving for an optimal solution, the just-noticeable difference (JND) model is introduced to perceptually determine maximum local gains and neighbouring gray-level difference for local and global contrast enhancement, respectively, and an adaptive parameter regularization method is invoked to further suppress over-enhancement and halo artifacts. The experimental results on many images both qualitatively and quantitatively demonstrate our algorithm can robustly provide better visual quality in global and local contrast compared to a selection of other well-known state-of-the-art algorithms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Arici T, Dikbas S, Altunbasak Y (2009) A histogram modification framework and its application for image contrast enhancement. IEEE Trans Image Process 18(9):1921–1935

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Celik T, Tjahjadi A (2012) Automatic image equalization and contrast enhancement using gaussian mixture modeling. IEEE Trans Image Process 21(1):145–156

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Chen S-D, Abd Ramli R (2003) Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans Cons Electron 49(4):1310–1319

    Article  Google Scholar 

  4. 4.

    Chen S-D, Abd Ramli R (2003) Contrast enhancement using recursive meanseparate histogram equalization for scalable brightness preservation. IEEE Trans Cons Electron 49(4):1301–1309

    Article  Google Scholar 

  5. 5.

    Chun-Ming T (2013) Adaptive local power-law transformation for color image enhancement. Appl Math Inf Sci 7(5):2019–2026

    MathSciNet  Article  Google Scholar 

  6. 6.

    Chou C-H, Li Y-C (1995) A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile. IEEE Trans Circ Syst Vid Technol 5(6):467–476

    Article  Google Scholar 

  7. 7.

    Corchs S, Gasparini F (2011) Enhancing underexposed images preserving the original mood. Third Int Workshop Comput Color Imaging, Milan, Italy 6626:125–136

    Article  Google Scholar 

  8. 8.

    Eunsung Lee, Kim S, Kang W, Seo D, Paik J (2013) Contrast enhancement using dominant brightness level analysis and adaptive intensity transformation for remote sensing images. IEEE Geosci Remote Sens Lett 10(1):62–66

    Article  Google Scholar 

  9. 9.

    Fu X, Liao Y, Zeng D, Huang Y, Zhang X, Ding X (2015) A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans Image Process 24(9):4965–4977

    MathSciNet  Article  Google Scholar 

  10. 10.

    Ghimire D, Lee J (2011) Nonlinear transfer function-based local approach for color image enhancement. IEEE Trans Cons Electron 57(2):858–865

    Article  Google Scholar 

  11. 11.

    Gonzalez RC, Woods RE (2006) Digital Image Processing, 3rd edn. Prentice-Hall Inc., NJ, USA

    Google Scholar 

  12. 12.

    Huang S-C, Cheng F-C, Chiu Y-S (2013) Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans Image Process 22(3):1032–1041

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Ilie A, Raskar R, Yu J (2005) Gradient domain context enhancement for fixed cameras. Int J Pattern Recogn Artif Intell 19(4):533–549

    Article  Google Scholar 

  14. 14.

    Jang I-S, Lee T-H, Ha H-G, Ha Y-Ho (2010) Adaptive color enhancement based on multi-scaled Retinex using local contrast of the input image. IEEE Trans Image Process 21(9):1–6

    Google Scholar 

  15. 15.

    Jae HJ, Yoonsung B, Jong BR (2012) Contrast-enhanced fusion of multisensor images using subband-decomposed multiscale retinex. IEEE Trans Image Process 21(8):3479–3490

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Jenifer S, Parasuraman S, Kadirvelu A (2016) Contrast enhancement and brightness preserving of digital mammograms using fuzzy clipped contrast-limited adaptive histogram equalization algorithm. Appl Soft Comput 42:167–177

    Article  Google Scholar 

  17. 17.

    Jobson DJ, Rahman Z-U, Woodel GA (1997) A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans Image Process 6(7):965–976

    Article  Google Scholar 

  18. 18.

    Karel Z (1994) Contrast limited adaptive histogram equalization. Academic Press Professional. Inc., CA, USA

    Google Scholar 

  19. 19.

    Kim Y-T (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 43(1):1–8

    Article  Google Scholar 

  20. 20.

    Kim SE, Jeon JJ, Eom IK (2016) Image contrast enhancement using entropy scaling in wavelet domain. Signal Process 127:1–11

    Article  Google Scholar 

  21. 21.

    Kodak Image:

  22. 22.

    Land EH, Mccann JJ (1971) Lightness and Retinex theory. J Opt Soc Am 61(1):1–11

    Article  Google Scholar 

  23. 23.

    Lee C-H, Lin P-Y, Chen L-H, Wang W-K (2012) Image enhancement approach using the just-noticeable-difference model of the human visual system. J Electron Imaging 21(6):0330071–13

    Google Scholar 

  24. 24.

    Mila N, Wen Y-W (2012) Exact histogram specification for digital images using a variational approach. J Math Imaging Vis 46(3):309–325

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Mukhopadhyay J, Mitra SK (2008) Color enhancement in the compressed domain The 5th IEEE International Conference on Image Processing, CA, USA, pp 3144–3147

  26. 26.

    Nam Y-O, Choi D-Y, Song BC (2014) Power-constrained contrast enhancement algorithm using multiscale Retinex for oLED display. IEEE Trans Image Process 23(8):3308–3320

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Pei S-C, Shen C-T, Lee T-Y (2012) Visual enhancement using constrained L0 gradient image decomposition for low backlight displays, IEEE Signal Processing Letter, vol 19(12)

  28. 28.

    Polesel A, Ramponi G, Mathews VJ (2000) Image enhancement via adaptive unsharp masking. IEEE Trans Image Process 9(3):505–510

    Article  Google Scholar 

  29. 29.

    Raimondo S, Francesca G, Silvia C, Fabrizio M (2010) Contrast image correction method. J Electron Imaging 19(2):0230051–02300511

    Google Scholar 

  30. 30.

    Rao Y, Chen L (2012) A survey of video enhancement techniques. J Inf Hiding Multimed Signal Process 3(1):71–99

    Google Scholar 

  31. 31.

    Rahman ZU, Jobson DJ, Woodell GA (2014) Retinex processing for automatic image enhancement. J Electron Imaging 13(1):100–110

    Google Scholar 

  32. 32.

    Rao Y, Lin W, Chen L (2010) Image-based fusion for video enhancement of night-time surveillance. Opt Eng Lett 49(2):1205011–1205013

    Google Scholar 

  33. 33.

    Rivera AR, Ryu B, Chae O (2012) Content-aware dark image enhancement through channel division. IEEE Trans Image Process 21(9):3967–3980

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Shanmugavadivu P, Balasubramanian K (2014) Particle swarm optimized multi-objective histogram equalization for image enhancement. Opt Laser Technol 57:243–251

    Article  Google Scholar 

  35. 35.

    Saibabu A, Vijayan AK (2006) An adaptive and non linear technique for enhancement of extremely high contrast images. The 35th IEEE Applied Imagery and Pattern Recognition Workshop(AIPR), Washington, DC

    Google Scholar 

  36. 36.

    Saruchi (2012) Adaptive sigmoid function to enhance low contrast images. Int J Comput Appl 55(4):45–49

    Google Scholar 

  37. 37.

    Turgay C (2014) Two-dimensional histogram equalization and contrast enhancement. Pattern Recogn 45(10):3810–3824

    Google Scholar 

  38. 38.

    UCID dataset:

  39. 39.

    Wang Y, Chen Q, Zhang B (1999) Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans Cons Electron 45 (1):68–75

    Article  Google Scholar 

  40. 40.

    Zhen J, Hongcheng W, Caballero R, Ziyou X, Jianwei Z, Finn A (2011) A two-step approach to see-through bad weather for surveillance video quality enhancement. IEEE International Conference on Robotics and Automation (ICRA), 5309–5314

  41. 41.

    Zhengguo L, Jinghong Z, Zijian Z, Wei Y, Shiqian W (2005) Weighted guided image filtering. IEEE Trans Image Process 24(1):120–129

    MathSciNet  Article  Google Scholar 

  42. 42.

    Zhetong L, Weijian L, Ruohe Y (2016) Contrast enhancement by nonlinear diffusion filtering. IEEE Trans Image Process 673-686:25

    MathSciNet  Google Scholar 

  43. 43.

    Zhigang Z, Nong S, Xinrong H (2014) Global brightness and local contrast adaptive enhancement for low illumination color image. Optik-Int J Light Electron Opt 125(6):1795–1799

    Article  Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (Grant No. 61471166, 61473227 and 61374023) and Natural Science Foundation of Hunan Province (CN) (14JJ2052).

Author information



Corresponding author

Correspondence to Zhigang Ling.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ling, Z., Fan, G., Liang, Y. et al. Joint optimization and perceptual boosting of global and local contrast for efficient contrast enhancement. Multimed Tools Appl 77, 2467–2484 (2018).

Download citation


  • Contrast enhancement
  • Joint optimization of local and global contrast
  • Perceptual contrast boosting
  • Just-noticeable difference
  • Adaptive parameter regularization