Multimedia Tools and Applications

, Volume 77, Issue 5, pp 5215–5239 | Cite as

Revertible tone mapping of high dynamic range imagery: Integration to JPEG 2000



This paper presents a revertible tone mapping approach based on subband architecture where the dynamic range of the HDR (High Dynamic Range) image is decreased to LDR (Low Dynamic Range) to fit several types of applications. The LDR image can be later expanded to get back the original HDR content. One important benefit of the proposed approach is its backward compatibility with low dynamic (LDR) image applications since no extra information is needed to perform a very efficient HDR reconstruction. In order to improve the efficiency of our TM (Tone Mapping), we couple it with an optimisation procedure to minimize the reconstruction error. Subjective and objective comparisons with state-of-the-art methods have shown superior quality results of both tone mapped and reconstructed images. As a potential application, the integration of the proposed tone mapping to JPEG 2000 encoder achieved competitive performance compared to reference HDR image encoders.


High dynamic range Tone-mapping Companding Subband decomposition Gain map JPEG 2000 compression 


  1. 1.
    Akyüz AO, Fleming R, Riecke BE, Reinhard E, Bülthoff HH (2007) Do hdr displays support ldr content?: A psychophysical evaluation. ACM Trans Graph 26Google Scholar
  2. 2.
    Bamberger R, Smith M (1992) A filter bank for the directional decomposition of images: Theory and design. IEEE Trans Signal Process 40:882–893CrossRefGoogle Scholar
  3. 3.
    Banterle F, Artusi A, Sikudova E, Bashford-Rogers T, Ledda P, Bloj M, Chalmers A (2012) Dynamic range compression by differential zone mapping based on psychophysical experiments Proceedings of the ACM Symposium on Applied Perception, SAP ’12. ACM, NY, USA, pp 39–46CrossRefGoogle Scholar
  4. 4.
    Banterle F, Ledda P, Debattista K, Chalmers A (2006) Inverse tone mapping Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, GRAPHITE ’06. ACM, NY, USA, pp 349–356CrossRefGoogle Scholar
  5. 5.
    Bruce N (2014) ExpoBlend: Information preserving exposure blending based on norMalized log-domain entropy. Comput Graph 39:12–23CrossRefGoogle Scholar
  6. 6.
    Cohen J, Tchou C, Hawkins T, Debevec P (2001) Real-time high dynamic range texture mapping Proceedings of the 12th Eurographics Workshop on Rendering Techniques. Springer-Verlag, UK, pp 313–320Google Scholar
  7. 7.
    Durand F, Dorsey J (2002) Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans Graph (TOG) 21:257–266Google Scholar
  8. 8.
    Drago F, Myszkowski K, Annen T, Chiba N (2003) Adaptive logarithmic mapping for displaying high contrast scenes. Comput Graph Forum 22:419–426CrossRefGoogle Scholar
  9. 9.
    Fattal R, Lischinski D, Werman M (2002) Gradient domain high dynamic range compression Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’02. ACM, NY, USA, pp 249–256CrossRefGoogle Scholar
  10. 10.
    Jianping Z, Minh N (2005) Multidimensional oversampled lter banks. In: Wavelet Applications Signal Image Processing XIGoogle Scholar
  11. 11.
    Jobson D, Rahman Z-u, Woodell G (1997) A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans Image Process 6:965–976CrossRefGoogle Scholar
  12. 12.
    Landis H (2002) Production-ready global illumination. In: Siggraph Course Notes 16Google Scholar
  13. 13.
    Li Y, Sharan L, Adelson E (2005) Compressing and companding high dynamic range images with subband architectures. ACM Trans Graph (TOG) 24:836–844CrossRefGoogle Scholar
  14. 14.
    Liu L, Liu B, Huang H, Bovik AC (2014) No-reference image quality assessment based on spatial and spectral entropies. Signal Process Image Commun 29 (8):856–863CrossRefGoogle Scholar
  15. 15.
    Ma K, Yeganeh H, Zeng K, Wang Z (2015) High dynamic range image compression by optimizing tone mapped image quality index. IEEE Trans Image Process 24:3086–3097MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mantiuk R, Kim K, Rempel A, Heidrich W (2011) Hdr-vdp-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans Graph (TOG) 30:40,1–40,14CrossRefGoogle Scholar
  17. 17.
    Meylan L, Daly S, Sǎijsstrunk S (2006) The reproduction of specular highlights on high dynamic range displays, In: In IST/SID 14th Color Imaging ConferenceGoogle Scholar
  18. 18.
    Mittal A, Soundararajan R, Bovik A (2013) Making a ”completely blind” image quality analyzer. Signal Process Lett, IEEE 20:209–212CrossRefGoogle Scholar
  19. 19.
    Munkberg J, Clarberg P, Hasselgren J, Akenine-Möller T. (2006) High dynamic range texture compression for graphics hardware. ACM Trans Graph (TOG) 25:698–706CrossRefMATHGoogle Scholar
  20. 20.
    Pattanaik S, Ferwerda J, Fairchild M, Greenberg D (1998) A multiscale model of adaptation and spatial vision for realistic image display Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’98. ACM, NY, USA, pp 287–298CrossRefGoogle Scholar
  21. 21.
    Pattanaik S, Tumblin J, Yee H, Greenberg D (2000) Time-dependent visual adaptation for fast realistic image display Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00. ACM Press/Addison-Wesley Publishing Co., NY, USA, pp 47–54CrossRefGoogle Scholar
  22. 22.
    Pece F, Kautz J (2010) Bitmap movement detection: Hdr for dynamic scenes Proceedings of the 2010 Conference on Visual Media Production, CVMP ’10. IEEE Computer Society, DC, USA , pp 1–8Google Scholar
  23. 23.
    Richter PST, Bruylants T, Ebrahimi T (2015) The jpeg xt suite of standards: status and future plans. In: Proceedings of SPIE: Applications of Digital Image Processing XXXVIII, 9599Google Scholar
  24. 24.
    Reinhard E, Devlin K (2005) Dynamic range reduction inspired by photoreceptor physiology. IEEE Trans Vis Comput Graph 11:13–24CrossRefGoogle Scholar
  25. 25.
    Scheel A, Stamminger M, Seidel H (2000) Tone reproduction for interactive walkthroughs. Comput Graph Forum 19(3):301–311CrossRefGoogle Scholar
  26. 26.
    Smith M, Eddins S (1990) Analysis/synthesis techniques for subband image coding. IEEE Trans Acoust, Speech Signal Process 38:1446–1456CrossRefGoogle Scholar
  27. 27.
    Taubman D, Marcellin M (2000) JPEG 2000: Image compression fundamentals, Standards and practice. Kluwer Academic Publishers, MA, USA, p 2001Google Scholar
  28. 28.
    Tumblin J, Hodgins J, Guenter B (1999) Two methods for display of high contrast images. ACM Trans Graph 18(1):56–94CrossRefGoogle Scholar
  29. 29.
    Tumblin J, Turk G (1999) LCIS: A Boundary hierarchy for detail-preserving contrast reduction Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99. ACM Press/Addison-Wesley Publishing Co., NY, USA, pp 83–90CrossRefGoogle Scholar
  30. 30.
    Vetterli M, Kovačevic J (1995) Wavelets and subband coding. Prentice-Hall, Inc., NJ, USAMATHGoogle Scholar
  31. 31.
    Ward G (1994) Graphics gems iv, ch. A Contrast-based Scalefactor for Luminance Display. Academic Press Professional, Inc., CA, USA, pp 415–421Google Scholar
  32. 32.
    Ward G, Simmons M (2006) JPEG-HDR: A Backwards-compatible, High Dynamic Range Extension to JPEG ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06. ACM, NY, USAGoogle Scholar
  33. 33.
    Xiang Z, Milanfar P (2010) Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Trans Image Process 19:3116–3132MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Xu R, Pattanaik S, Hughes C (2005) High-dynamic-range still-image encoding in JPEG 2000. Comput Graph Appl IEEE 25:57–64CrossRefGoogle Scholar
  35. 35.
    Yeganeh H, Zhou W (2013) Objective quality assessment of tone-mapped images. IEEE Trans Image Process 22:657–667MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Zhang Y, Naccari M, Agrafiotis D, Mrak M, Bull DR (2016) High dynamic range video compression exploiting luminance masking. IEEE Trans Circ Syst Vid Technol 26:950–964CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.National Engineering School of Tunis, SysCom LaboratoryUniversity of Tunis El ManarTunisTunisia
  2. 2.XLIM-SIC Laboratory, UMR CNRS 6172University of PoitiersFuturoscope ChasseneuilFrance

Personalised recommendations