Advertisement

Multimedia Tools and Applications

, Volume 76, Issue 13, pp 14905–14919 | Cite as

Realistic emotion visualization by combining facial animation and hairstyle synthesis

  • Jun YuEmail author
  • Lingyan Li
  • Jie ZouEmail author
Article
  • 319 Downloads

Abstract

Facial expressions are one of most intuitive way for expressing emotions, and can facilitate human-computer interaction by enabling users to communicate with computers using more natural ways. Besides, the hair can be designed to enhance the expression of emotions particularly. To visualize the emotions in multiple aspects for completeness, we propose a realistic visual emotional synthesis system based on the combination of facial expression and hairstyle in this paper. Firstly, facial expression is synthesized by the anatomical model and parameterized model. Secondly, cartoonish hairstyle is synthesized to describe emotion implicitly by the mass-spring model and cantilever beam model. Finally, the synthesis results of facial expression and hairstyle are combined to produce a complete visual emotion synthesis result. Experiment results demonstrate the proposed system can synthesize realistic animation, and the emotion expressiveness by combining of face and hair outperform that by face or hair alone.

Keywords

Visual emotion synthesis Facial animation Hair animation 

References

  1. 1.
    Bando Y, Chen B-Y, Nishita T (2003) Animating hair with loosely connected particles. Comp. Graph. Forum (Eurographics Proc.)Google Scholar
  2. 2.
    Bertails F, Audoly B, Cani M-P, Querleux B, Leroy EF, Levque J-L (2006) Super-helices for predicting the dynamics of natural hair. ACM Trans Graph 25(3):1180–1187CrossRefGoogle Scholar
  3. 3.
    Blanz V, Basso C, Poggio T, Vetter T (2003) Reanimating faces in images and video. Computer Graphics 22(3):641–650Google Scholar
  4. 4.
    Bonneel N, Paris S, Van de Panne M, Durand F, Drettakis G (2009) Single photo estimation of hair appearance. Computer Graphics Forum 28:1171–1180CrossRefGoogle Scholar
  5. 5.
    Bro-Nielsen M (1998) Finite element modeling in surgery simulation. Proc IEEE 86(3):490–503CrossRefGoogle Scholar
  6. 6.
    Chai M, Wang L, Weng Y et al (2012) Single-view hair modeling for portrait manipulation[J]. ACM Trans Graph 31(4):Article 116–Article 116CrossRefGoogle Scholar
  7. 7.
    Chai M, Zheng C, Zhou K (2014) A reduced model for interactive hairs [J]. ACM Trans Graph 33(4):1–11CrossRefGoogle Scholar
  8. 8.
    Chai M, Luo L, Sunkavalli K et al (2015) High-quality hair modeling from a single portrait photo [J]. ACM Trans Graph 34(6):1–10CrossRefGoogle Scholar
  9. 9.
    Feng W-W, Yu Y, Kim B-U (2010) A deformation transformer for real-time cloth animation. ACM Trans Graph 29(4):108CrossRefGoogle Scholar
  10. 10.
    Jun Y, Zeng-fu W (2014) 3D facial motion tracking by combining online appearance model and cylinder head model in particle filtering. Science China-Information Sciences 57(2):274–280Google Scholar
  11. 11.
    Koch RM, Gross MH, Carls FR, von Büren DF, Fankhauser G, Parish YIH (1996) Simulating facial surgery using finite element models, Annual Conference on CGIT, pp 421–428Google Scholar
  12. 12.
    Lee YC, Terzopoulos D, Waters K (1995) Realistic modeling for facial animation, SIGGRAPH, pp 55–62Google Scholar
  13. 13.
    Marcos S, Garcia Bermejo JG, Zalama E (2008) A realistic facial animation suitable for human-robot interfacing, ICIRS, pp 3810–3815Google Scholar
  14. 14.
    Matthews I, Xiao J, Baker S (2007) 2D vs. 3D deformable face models: representational power, construction, and real-time fitting. IJCV 75(1):93–113CrossRefGoogle Scholar
  15. 15.
    Paris S, Briceno H, And Sillion F (2004) Capture of hair geometry from multiple images. ACM Trans Graph 23(3):712–719CrossRefGoogle Scholar
  16. 16.
    Parke FI, Waters K (1996) Computer facial animation. Wellesley, BostonGoogle Scholar
  17. 17.
    Peter E (2003) MPEG-4 facial animation in video analysis and synthesis. JIST 13(5):245–256Google Scholar
  18. 18.
    Pighing F, Hecker J, Lischinski D, Szeliski R, Salesin DH (1998) Synthesizing realistic facial expressions from photograph, SIGGRAPH, pp 75–84Google Scholar
  19. 19.
    Selle A, Letin M, Fedkiw WR (2008) A mass spring model for hair simulation. ACM Trans Graph 27(3):64CrossRefGoogle Scholar
  20. 20.
    Sifakis E, Neverov I, Fedkiw R (2005) Automatic determination of facial muscle activations from sparse motion. ACM TOG 24(3):417–425CrossRefGoogle Scholar
  21. 21.
    Sifakis E, Selle A, Robinson-Mosher A, Fedkiw R (2006) Simulating speech with a physics-based facial muscle model, SCA, pp 261–270Google Scholar
  22. 22.
    Usami Y et al (1992) A simple method for extracting the natural beauty of hair. Computer Graphics 26(2):111–120CrossRefGoogle Scholar
  23. 23.
    Wang WM et al. (2009) A physically-based modeling and simulation framework for facial animation, ICIG, pp 521–526Google Scholar
  24. 24.
    Waters K (1987) A muscle model for animating three dimensional facial expression. Computer Graphics 22(4):17–24CrossRefGoogle Scholar
  25. 25.
    Wei Y, Ofek E, Quan L, Shum H-Y (2005) Modeling hair from multiple views. ACM Trans Graph 24(3):816–820CrossRefGoogle Scholar
  26. 26.
    Xu Z, Mei L, Hu C, Liu Y (2016a) The big data analytics and applications of the surveillance system using video structured description technology. Clust Comput 19(3):1283–1292CrossRefGoogle Scholar
  27. 27.
    Xu Z, Mei L, Liu Y, Hu C, Chen L (2016b) Semantic enhanced cloud environment for surveillance data management using video structural description. Computing 98(1–2):35–54MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Xu Z, Hu C, Mei L (2016c) Video structured description technology based intelligence analysis of surveillance videos for public security applications. Multimedia Tools Appl 75(19):12155–12172CrossRefGoogle Scholar
  29. 29.
    Yacoob Y, Davis LS (2006) Detection and analysis of hair. IEEE Trans on PAMI 28(7):1164–1169CrossRefGoogle Scholar
  30. 30.
    Yu J (2016) Facial video coding/decoding at ultra-low bit-rate: a 2D + 3D model-based approach. Multimedia Tools and Applications 75(19):12021–12041CrossRefGoogle Scholar
  31. 31.
    Yu J, Wang Z (2015) A video, text, and speech-driven realistic 3-d virtual head for human-machine interface. IEEE, Transactions on Cybernetics 45(5):977–988Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of AutomationUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of Computer Science and TechnologyWuhan Technology and Business UniversityWuhanChina

Personalised recommendations