Multi-view texture classification using hierarchical synthetic images

Abstract

Multi-view texture classification is a very challenging task since the view-point variation often leads to the inconsistent local texton patterns. Existing studies focus on the extraction of scale, rotation or affine invariant representations by some specially designed invariant measurements or local descriptors. Differently, in this paper, we propose another framework for multi-view texture classification. A number of synthetic images are hierarchically created to enlarge the training dataset to cover the possible variations of different view-points. Then, a classifier based on random forests is trained based on these synthetic images. In the classification stage, we also create synthetic images for each testing image, and the synthetic images are classified with the pre-trained classifier. The final decision for this testing image is made by the majority voting of the classification results of all these synthetic images. The classification performance is evaluated on the UIUC texture dataset. Our method achieves the classification rate of 99.21%, which is higher than most of the state-of-the-arts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    An L, Chen X, Liu S, Lei Y, Yang S (2016) Integrating appearance features and soft biometrics for person re-identification. Multimedia Tools and Applications:1–15

  2. 2.

    Bosch A, Zisserman A, Munoz X (2007) Image classification using random forests and ferns. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007. IEEE, pp 1–8

  3. 3.

    Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  4. 4.

    Caputo B, Hayman E, Mallikarjuna P Class-specific material categorisation. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol 2. IEEE, pp 1597–1604

  5. 5.

    Chen J, Shan S, He C, Zhao G, Pietikäinen M, Chen X, Gao W (2010) WLD: a robust local image descriptor. IEEE Trans Pattern Anal Mach Intell 32(9):1705–1720

    Article  Google Scholar 

  6. 6.

    Chen X, An L, Yang S, Wu W (2015) Kinship verification in multi-linear coherent spaces. Multimedia Tools and Applications:1–18

  7. 7.

    Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    Article  MATH  Google Scholar 

  8. 8.

    Criminisi A, Shotton J (2013) Decision forests for computer vision and medical image analysis. Springer Science & Business Media

  9. 9.

    Crosier M, Griffin LD (2010) Using basic image features for texture classification. Int J Comput Vis 88(3):447–460

    MathSciNet  Article  Google Scholar 

  10. 10.

    Cula O, Dana K (2004) 3D texture recognition using bidirectional feature histograms. Int J Comput Vis 59(1):33–60

    Article  Google Scholar 

  11. 11.

    Dash JK, Mukhopadhyay S, Gupta RD (2016) Multiple classifier system using classification confidence for texture classification. Multimedia Tools and Applications:1–22

  12. 12.

    Fanelli G, Dantone M, Gall J, Fossati A, Van Gool L (2013) Random forests for real time 3d face analysis. Int J Comput Vis 101(3):437–458

    Article  Google Scholar 

  13. 13.

    Jafari-Khouzani K, Soltanian-Zadeh H (2005) Radon transform orientation estimation for rotation invariant texture analysis. IEEE Trans Pattern Anal Mach Intell 27(6):1004–1008

    Article  Google Scholar 

  14. 14.

    Kim KI, Jung K, Park SH, Kim HJ (2002) Support vector machines for texture classification. IEEE Trans Pattern Anal Mach Intell 24(11):1542–1550

    Article  Google Scholar 

  15. 15.

    Lazebnik S, Schmid C, Ponce J (2003) Affine-invariant local descriptors and neighborhood statistics for texture recognition. In: Proceedings Ninth IEEE International Conference on Computer Vision, 2003. IEEE, pp 649–655

  16. 16.

    Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278

    Article  Google Scholar 

  17. 17.

    Leung T, Malik J (2001) Representing and recognizing the visual appearance of materials using three-dimensional textons. Int J Comput Vis 43(1):29–44

    Article  MATH  Google Scholar 

  18. 18.

    Li S, Kwok JT, Zhu H, Wang Y (2003) Texture classification using the support vector machines. Pattern Recogn 36(12):2883–2893

    Article  MATH  Google Scholar 

  19. 19.

    Liu M, Zhang D (2016) Pairwise constraint-guided sparse learning for feature selection. IEEE Transactions on Cybernetics 46(1):298–310

    MathSciNet  Article  Google Scholar 

  20. 20.

    Liu M, Zhang D, Chen S, Xue H (2016) Joint binary classifier learning for ecoc-based multi-class classification. IEEE Trans Pattern Anal Mach Intell. 38(11):2335–2341

  21. 21.

    Mellor M, Hong B, Brady M (2008) Locally rotation, contrast, and scale invariant descriptors for texture analysis. IEEE Trans Pattern Anal Mach Intell 30(1):52–61

    Article  Google Scholar 

  22. 22.

    Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture analysis with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  23. 23.

    Parameswaran V, Chellappa R (2006) View invariance for human action recognition. Int J Comput Vis 66(1):83–101

    Article  Google Scholar 

  24. 24.

    Shotton J, Johnson M, Cipolla R (2008) Semantic texton forests for image categorization and segmentation. In: IEEE Conference on Computer vision and pattern recognition, 2008. CVPR 2008. IEEE, pp 1–8

  25. 25.

    Shrivastava N, Tyagi V (2015) Noise-invariant structure pattern for image texture classification and retrieval. Multimedia Tools and Applications:1–20

  26. 26.

    Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  MATH  Google Scholar 

  27. 27.

    Tiwari D, Tyagi V (2016) Improved webers law based local binary pattern for dynamic texture recognition. Multimedia Tools and Applications:1–18

  28. 28.

    Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62(1):61–81

    Article  Google Scholar 

  29. 29.

    Varma M, Zisserman A (2009) A statistical approach to material classification using image patch exemplars. IEEE Trans Pattern Anal Mach Intell 31(11):2032–2047

    Article  Google Scholar 

  30. 30.

    Zhang J, Liang J, Zhao H (2013) Local energy pattern for texture classification using self-adaptive quantization thresholds. IEEE Trans Image Process 22(1):31–42

    MathSciNet  Article  Google Scholar 

  31. 31.

    Zhang J, Liang J, Zhang C, Zhao H (2015) Scale invariant texture representation based on frequency decomposition and gradient orientation. Pattern Recogn Lett 51:57–62

    Article  Google Scholar 

  32. 32.

    Zhang J, Marszalek M, Lazebnik S, Schmid C (2006) Local features and kernels for classification of texture and object categories: a comprehensive study. In: Conference on Computer Vision and Pattern Recognition Workshop, 2006. CVPRW’06

  33. 33.

    Zhang J, Zhao H, Liang J (2013) Continuous rotation invariant local descriptors for texton dictionary-based texture classification. Comp Vision Image Underst 117 (1):56–75

    Article  Google Scholar 

  34. 34.

    Zhu X, Huang Z, Shen HT, Cheng J, Xu C (2012) Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recogn 45(8):3003–3016

    Article  MATH  Google Scholar 

  35. 35.

    Zhu X, Li X, Zhang S (2016) Block-row sparse multiview multilabel learning for image classification. IEEE transactions on Cybernetics 46(2):450–461

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 61571353 and the Natural Science Basic Research Plan in Shaanxi Province of China under Grant No. 2015JZ019.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jimin Liang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liang, J. & Hu, H. Multi-view texture classification using hierarchical synthetic images. Multimed Tools Appl 76, 17511–17523 (2017). https://doi.org/10.1007/s11042-016-4231-3

Download citation

Keywords

  • Texture classification
  • Multi-view points
  • Affine transform
  • Random forests
  • Dictionary learning