Multimedia Tools and Applications

, Volume 76, Issue 16, pp 17511–17523 | Cite as

Multi-view texture classification using hierarchical synthetic images

  • Jun Zhang
  • Jimin LiangEmail author
  • Haihong Hu


Multi-view texture classification is a very challenging task since the view-point variation often leads to the inconsistent local texton patterns. Existing studies focus on the extraction of scale, rotation or affine invariant representations by some specially designed invariant measurements or local descriptors. Differently, in this paper, we propose another framework for multi-view texture classification. A number of synthetic images are hierarchically created to enlarge the training dataset to cover the possible variations of different view-points. Then, a classifier based on random forests is trained based on these synthetic images. In the classification stage, we also create synthetic images for each testing image, and the synthetic images are classified with the pre-trained classifier. The final decision for this testing image is made by the majority voting of the classification results of all these synthetic images. The classification performance is evaluated on the UIUC texture dataset. Our method achieves the classification rate of 99.21%, which is higher than most of the state-of-the-arts.


Texture classification Multi-view points Affine transform Random forests Dictionary learning 



This work was supported by the National Natural Science Foundation of China under Grant No. 61571353 and the Natural Science Basic Research Plan in Shaanxi Province of China under Grant No. 2015JZ019.


  1. 1.
    An L, Chen X, Liu S, Lei Y, Yang S (2016) Integrating appearance features and soft biometrics for person re-identification. Multimedia Tools and Applications:1–15Google Scholar
  2. 2.
    Bosch A, Zisserman A, Munoz X (2007) Image classification using random forests and ferns. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007. IEEE, pp 1–8Google Scholar
  3. 3.
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRefzbMATHGoogle Scholar
  4. 4.
    Caputo B, Hayman E, Mallikarjuna P Class-specific material categorisation. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol 2. IEEE, pp 1597–1604Google Scholar
  5. 5.
    Chen J, Shan S, He C, Zhao G, Pietikäinen M, Chen X, Gao W (2010) WLD: a robust local image descriptor. IEEE Trans Pattern Anal Mach Intell 32(9):1705–1720CrossRefGoogle Scholar
  6. 6.
    Chen X, An L, Yang S, Wu W (2015) Kinship verification in multi-linear coherent spaces. Multimedia Tools and Applications:1–18Google Scholar
  7. 7.
    Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27CrossRefzbMATHGoogle Scholar
  8. 8.
    Criminisi A, Shotton J (2013) Decision forests for computer vision and medical image analysis. Springer Science & Business MediaGoogle Scholar
  9. 9.
    Crosier M, Griffin LD (2010) Using basic image features for texture classification. Int J Comput Vis 88(3):447–460MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cula O, Dana K (2004) 3D texture recognition using bidirectional feature histograms. Int J Comput Vis 59(1):33–60CrossRefGoogle Scholar
  11. 11.
    Dash JK, Mukhopadhyay S, Gupta RD (2016) Multiple classifier system using classification confidence for texture classification. Multimedia Tools and Applications:1–22Google Scholar
  12. 12.
    Fanelli G, Dantone M, Gall J, Fossati A, Van Gool L (2013) Random forests for real time 3d face analysis. Int J Comput Vis 101(3):437–458CrossRefGoogle Scholar
  13. 13.
    Jafari-Khouzani K, Soltanian-Zadeh H (2005) Radon transform orientation estimation for rotation invariant texture analysis. IEEE Trans Pattern Anal Mach Intell 27(6):1004–1008CrossRefGoogle Scholar
  14. 14.
    Kim KI, Jung K, Park SH, Kim HJ (2002) Support vector machines for texture classification. IEEE Trans Pattern Anal Mach Intell 24(11):1542–1550CrossRefGoogle Scholar
  15. 15.
    Lazebnik S, Schmid C, Ponce J (2003) Affine-invariant local descriptors and neighborhood statistics for texture recognition. In: Proceedings Ninth IEEE International Conference on Computer Vision, 2003. IEEE, pp 649–655Google Scholar
  16. 16.
    Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278CrossRefGoogle Scholar
  17. 17.
    Leung T, Malik J (2001) Representing and recognizing the visual appearance of materials using three-dimensional textons. Int J Comput Vis 43(1):29–44CrossRefzbMATHGoogle Scholar
  18. 18.
    Li S, Kwok JT, Zhu H, Wang Y (2003) Texture classification using the support vector machines. Pattern Recogn 36(12):2883–2893CrossRefzbMATHGoogle Scholar
  19. 19.
    Liu M, Zhang D (2016) Pairwise constraint-guided sparse learning for feature selection. IEEE Transactions on Cybernetics 46(1):298–310MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu M, Zhang D, Chen S, Xue H (2016) Joint binary classifier learning for ecoc-based multi-class classification. IEEE Trans Pattern Anal Mach Intell. 38(11):2335–2341Google Scholar
  21. 21.
    Mellor M, Hong B, Brady M (2008) Locally rotation, contrast, and scale invariant descriptors for texture analysis. IEEE Trans Pattern Anal Mach Intell 30(1):52–61CrossRefGoogle Scholar
  22. 22.
    Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture analysis with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRefzbMATHGoogle Scholar
  23. 23.
    Parameswaran V, Chellappa R (2006) View invariance for human action recognition. Int J Comput Vis 66(1):83–101CrossRefGoogle Scholar
  24. 24.
    Shotton J, Johnson M, Cipolla R (2008) Semantic texton forests for image categorization and segmentation. In: IEEE Conference on Computer vision and pattern recognition, 2008. CVPR 2008. IEEE, pp 1–8Google Scholar
  25. 25.
    Shrivastava N, Tyagi V (2015) Noise-invariant structure pattern for image texture classification and retrieval. Multimedia Tools and Applications:1–20Google Scholar
  26. 26.
    Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300CrossRefzbMATHGoogle Scholar
  27. 27.
    Tiwari D, Tyagi V (2016) Improved webers law based local binary pattern for dynamic texture recognition. Multimedia Tools and Applications:1–18Google Scholar
  28. 28.
    Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62(1):61–81CrossRefGoogle Scholar
  29. 29.
    Varma M, Zisserman A (2009) A statistical approach to material classification using image patch exemplars. IEEE Trans Pattern Anal Mach Intell 31(11):2032–2047CrossRefGoogle Scholar
  30. 30.
    Zhang J, Liang J, Zhao H (2013) Local energy pattern for texture classification using self-adaptive quantization thresholds. IEEE Trans Image Process 22(1):31–42MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhang J, Liang J, Zhang C, Zhao H (2015) Scale invariant texture representation based on frequency decomposition and gradient orientation. Pattern Recogn Lett 51:57–62CrossRefGoogle Scholar
  32. 32.
    Zhang J, Marszalek M, Lazebnik S, Schmid C (2006) Local features and kernels for classification of texture and object categories: a comprehensive study. In: Conference on Computer Vision and Pattern Recognition Workshop, 2006. CVPRW’06Google Scholar
  33. 33.
    Zhang J, Zhao H, Liang J (2013) Continuous rotation invariant local descriptors for texton dictionary-based texture classification. Comp Vision Image Underst 117 (1):56–75CrossRefGoogle Scholar
  34. 34.
    Zhu X, Huang Z, Shen HT, Cheng J, Xu C (2012) Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recogn 45(8):3003–3016CrossRefzbMATHGoogle Scholar
  35. 35.
    Zhu X, Li X, Zhang S (2016) Block-row sparse multiview multilabel learning for image classification. IEEE transactions on Cybernetics 46(2):450–461CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Life Science and TechnologyXidian UniversityXianChina

Personalised recommendations