Skip to main content
Log in

Hyperspectral image coding and transmission scheme based on wavelet transform and distributed source coding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel scheme for satellite hyperspectral images broadcasting over wireless channels. First, a simple pre-processing is performed. Then, a new hyperspectral band ordering algorithm that improves the compression performance is implemented. The ordered image data is also normalized. The discrete wavelet transform with three-level decomposition is used to divide each hyperspectral image band into ten wavelet sub-bands; nine of them are the details and the last LL-LL-LL is an approximation version of the band. Coset coding based on distributed source coding (DSC) is used for the LL-LL-LL sub-band to achieve high compression efficiency and low encoding complexity. Then, without syndrome coding, the transmission power is allocated directly to the band details and coset values according to their distributions and magnitudes without forward error correction (FEC). Finally, these data are transformed by the Hadamard matrix and transmitted over a dense constellation. Satellite hyperspectral images from an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) satellite are used for the validation of the proposed scheme. Experimental results demonstrate that the proposed scheme improves the average image quality by 6.91, 3.00 and 7.68 dB over LineCast, SoftCast-3D, and Softcast-2D, respectively. It also achieves up to a 5.63 dB gain over JPEG2000 with FEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Antonini M, Barlaud M, Mathieu P, Daubechies I (1992) Image coding using wavelet transform. IEEE Trans Image Process 1(2):205–220

    Article  Google Scholar 

  2. Auli-Llinas F (2013) 2-step scalar deadzone quantization for bitplane image coding. IEEE Trans Image Process 22(12):4678–4688

    Article  MathSciNet  MATH  Google Scholar 

  3. Aulí-Llinàs F, Boi codec (2014) [Online]. Available: http://www.deic.uab.cat/~francesc/software/boi/

  4. Barret M, Gutzwiller J-L, Hariti M (2011) Low-complexity hyperspectral image coding using exogenous orthogonal optimal spectral transform (orthost) and degree-2 zerotrees. IEEE Trans Geosci Remote Sens 49(5):1557–1566

    Article  Google Scholar 

  5. Bartrina-Rapesta J, Aul-Llinàs F (2015) Cell-based two-step scalar deadzone quantization for high bit-depth hyperspectral image coding. IEEE Geosci Remote Sens Lett 12(9):1893–1897

    Article  Google Scholar 

  6. Beck RA, Vincent RK, Watts DW, Seibert MA, Pleva DP, Cauley MA, Ramos CT, Scott TM, Harter DW, Vickerman M et al (2005) A space-based end-to-end prototype geographic information network for lunar and planetary exploration and emergency response (2002 and 2003 field experiments). Comput Netw 47(5):765–783

    Article  Google Scholar 

  7. Bita IPA, Barret M, Pham D-T (2010) On optimal transforms in lossy compression of multicomponent images with jpeg2000. Signal Process 90(3):759–773

    Article  MATH  Google Scholar 

  8. Blanes I, Magli E, Serra-Sagrista J (2014) A tutorial on image compression for optical space imaging systems. IEEE Geosci Remote Sens Mag 2(3):8–26

    Article  Google Scholar 

  9. Carvajal G, Penna B, Magli E et al (2008) Unified lossy and near-lossless hyperspectral image compression based on jpeg 2000. IEEE Geosci Remote Sens Lett 5(4):593–597

    Article  Google Scholar 

  10. Consultative committee for space data systems (2014). [Online]. Available: http://www.ccsds.org

  11. Crowley MD, Chen W, Sukalac EJ, Sun X, Coronado PL, Zhang G-Q (2006) Visualization of remote hyperspectral image data using google earth. In: Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006. IEEE International Conference on. IEEE, 2006, pp. 907–910

  12. Du Q, Fowler JE (2007) Hyperspectral image compression using jpeg2000 and principal component analysis. IEEE Geosci Remote Sens Lett 4(2):201–205

    Article  Google Scholar 

  13. Evans B, Werner M, Lutz E, Bousquet M, Corazza GE, Maral G (2005) Integration of satellite and terrestrial systems in future multimedia communications. IEEE Wirel Commun 12(5):72–80

    Article  Google Scholar 

  14. Fan X, Wu F, Zhao D, Au OC, Gao W (2012) Distributed soft video broadcast (dcast) with explicit motion. In: Data Compression Conference (DCC), 2012. IEEE, 2012, pp. 199–208

  15. Fan X, Wu F, Zhao D, Au OC (2013) Distributed wireless visual communication with power distortion optimization. IEEE Trans Circuits Syst Video Technol 23(6):1040–1053

    Article  Google Scholar 

  16. Fan X, Wu F, Zhao D (2011) D-cast: Dsc based soft mobile video broadcast. In: Proceedings of the 10th International Conference on Mobile and Ubiquitous Multimedia. ACM, 2011, pp. 226–235

  17. Ghandi MM, Ghanbari M (2006) Layered h. 264 video transmission with hierarchical qam. J Vis Commun Image Represent 17(2):451–466

    Article  Google Scholar 

  18. Hagag A, Amin M, El-Samie FEA (2013) Simultaneous denoising and compression of multispectral images. J Appl Remote Sens 7(1):073511

    Article  Google Scholar 

  19. Hagag A, Amin M, El-Samie FEA (2015) Multispectral image compression with band ordering and wavelet transforms. SIViP 9(4):769–778

    Article  Google Scholar 

  20. Herwitz S, Johnson L, Dunagan S, Higgins R, Sullivan D, Zheng J, Lobitz B, Leung J, Gallmeyer B, Aoyagi M et al (2004) Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Comput Electron Agric 44(1):49–61

    Article  Google Scholar 

  21. Hyperspectral datasets available for downloaded from the nasa web site, 2014. [Online]. Available: http://compression.jpl.nasa.gov/hyperspectral/

  22. Jakubczak S, Katabi D (2011) Softcast: one-size-fits-all wireless video. ACM SIGCOMM Comp Commun Rev 41(4):449–450

    Google Scholar 

  23. Jakubczak S, Katabi D (2011) A cross-layer design for scalable mobile video. In: Proceedings of the 17th annual international conference on Mobile computing and networking. ACM, 2011, pp. 289–300

  24. Johnson M, Freeman K, Gilstrap R, Beck R (2004) Networking technologies enable advances in earth science. Comput Netw 46(3):423–435

    Article  Google Scholar 

  25. Kratochvl T (2009) Hierarchical modulation in dvb-t/h mobile tv transmission. In: Multi-carrier systems & solutions 2009. Springer, 2009, pp. 333–341

  26. Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7(1):48–50

    Article  MATH  MathSciNet  Google Scholar 

  27. Liveris AD, Xiong Z, Georghiades CN (2002) Joint source-channel coding of binary sources with side information at the decoder using ira codes. In: multimedia signal processing, 2002 I.E. Workshop on. IEEE, 2002, pp. 53–56

  28. Penna B, Tillo T, Magli E, Olmo G (2006) Progressive 3-d coding of hyperspectral images based on jpeg 2000. IEEE Geosci Remote Sens Lett 3(1):125–129

    Article  Google Scholar 

  29. Penna B, Tillo T, Magli E, Olmo G (2007) Transform coding techniques for lossy hyperspectral data compression. IEEE Trans Geosci Remote Sens 45(5):1408–1421

    Article  Google Scholar 

  30. Ramchandran K, Ortega A, Uz KM, Vetterli M (1993) Multiresolution broadcast for digital hdtv using joint source/channel coding. IEEE J Sel Areas Commun 11(1):6–23

    Article  Google Scholar 

  31. Reznic Z, Feder M, Freundlich S (2011) Apparatus and method for applying unequal error protection during wireless video transmission, Aug. 2 2011, uS Patent App. 13/137,263

  32. Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the h. 264/avc standard. IEEE Trans Circuits Syst Video Technol 17(9):1103–1120

    Article  Google Scholar 

  33. Shannon CE (2001) A mathematical theory of communication. ACM SIGMOBILE Mob Comput Commun Rev 5(1):3–55

    Article  MathSciNet  Google Scholar 

  34. Shannon CE et al (1961) Two-way communication channels. In: Proc. 4th Berkeley Symp. Math. Stat. Prob, vol. 1. Citeseer, 1961, pp. 611–644

  35. Slepian D, Wolf JK (1973) Noiseless coding of correlated information sources. IEEE Trans Inf Theory 19(4):471–480

    Article  MATH  MathSciNet  Google Scholar 

  36. Tate SR (1997) Band ordering in lossless compression of multispectral images. IEEE Trans Comput 46(4):477–483

    Article  MathSciNet  Google Scholar 

  37. Taubman D, Marcellin M (2012) JPEG2000 image compression fundamentals, standards and practice: image compression fundamentals, standards and practice. Springer Science & Business Media, 2012, vol. 642

  38. Toivanen P, Kubasova O, Mielikainen J (2005) Correlation-based band-ordering heuristic for lossless compression of hyperspectral sounder data. IEEE Geosci Remote Sens Lett 2(1):50–54

    Article  Google Scholar 

  39. Valsesia D, Magli E (2014) A novel rate control algorithm for onboard predictive coding of multispectral and hyperspectral images. IEEE Trans Geosci Remote Sens 52(10):6341–6355

    Article  Google Scholar 

  40. Wu S, Chen H, Bai Y, Zhu G (2016) A remote sensing image classification method based on sparse representation. Multimed Tools Appl, pp. 1–18

  41. Wu F, Peng X, Xu J (2014) Linecast: line-based distributed coding and transmission for broadcasting satellite images. IEEE Trans Image Process 23(3):1015–1027

    Article  MathSciNet  Google Scholar 

  42. Xu Q, Stankovic V, Xiong Z (2007) Distributed joint source-channel coding of video using raptor codes. IEEE J Sel Areas Commun 25(4):851–861

    Article  Google Scholar 

  43. Yan C, Zhang Y, Dai F, Wang X, Li L, Dai Q (2014) Parallel deblocking filter for hevc on many-core processor. Electron Lett 50(5):367–368

    Article  Google Scholar 

  44. Yan C, Zhang Y, Dai F, Zhang J, Li L, Dai Q (2014) Efficient parallel hevc intra-prediction on many-core processor. Electron Lett 50(11):805–806

    Article  Google Scholar 

  45. Yan C, Zhang Y, Xu J, Dai F, Li L, Dai Q, Wu F (2014) A highly parallel framework for hevc coding unit partitioning tree decision on many-core processors. IEEE Signal Processing Letters 21(5):573–576

    Article  Google Scholar 

  46. Yan C, Zhang Y, Xu J, Dai F, Zhang J, Dai Q, Wu F (2014) Efficient parallel framework for hevc motion estimation on many-core processors. IEEE Trans Circuits Syst Video Technol 24(12):2077–2089

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of China (NSFC) under grants 61472101, 61631017 and 61390513, the Major State Basic Research Development Program of China (973 Program 2015CB351804), and the National High Technology Research and Development Program of China (863 Program 2015AA015903). The authors would like to thank Prof. Dr. Michel Barret and Dr. Ibrahim Omara for their support in this work and also the anonymous reviewers for their valuable comments that greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hagag.

Additional information

This work was supported in part by the National Science Foundation of China (NSFC) under grants 61472101, 61631017 and 61390513, the Major State Basic Research Development Program of China (973 Program 2015CB351804), and the National High Technology Research and Development Program of China (863 Program 2015AA015903).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagag, A., Fan, X. & Abd El-Samie, F.E. Hyperspectral image coding and transmission scheme based on wavelet transform and distributed source coding. Multimed Tools Appl 76, 23757–23776 (2017). https://doi.org/10.1007/s11042-016-4158-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4158-8

Keywords

Navigation