Skip to main content
Log in

An AK-BRP dictionary learning algorithm for video frame sparse representation in compressed sensing

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Sparsifying transform is an important prerequisite in compressed sensing. And it is practically significant to research the fast and efficient signal sparse representation methods. In this paper, we propose an adaptive K-BRP (AK-BRP) dictionary learning algorithm. The bilateral random projection (BRP), a method of low rank approximation, is used to update the dictionary atoms. Furthermore, in the sparse coding stage, an adaptive sparsity constraint is utilized to obtain sparse representation coefficient and helps to improve the efficiency of the dictionary update stage further. Finally, for video frame sparse representation, our adaptive dictionary learning algorithm achieves better performance than K-SVD dictionary learning algorithm in terms of computation cost. And our method produces smaller reconstruction error as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    Article  MATH  Google Scholar 

  2. Anaraki PF, Hughes SM (2013) Compressive K-SVD. In: Proceedings of the 2013 I.E. International Conference on Acoustics, Speech, and Signal Processing. Vancouver, Canada: IEEE, 5469–5473

  3. Bahrampour S, Nasrabadi NM, Ray A, and Jenkins WK (2015) “Multimodal task-driven dictionary learning for image classification,” arXiv: 1502.01094

  4. Candès E, Tao T (2006) Near optional signal recovery from random projections: universal encoding strategies [J]. IEEE Trans Inf Theory 52(12):5406–5425

    Article  MATH  Google Scholar 

  5. Candès EJ, Wakin MB (2008) An intoduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30

    Article  Google Scholar 

  6. Tianyi Zhou and Dacheng Tao (2012) Bilateral random projections, Proceedings of the 2012 I.E. International Symposium on Information Theory, pp. 1286–1290

  7. Tianyi Zhou and Dacheng Zhao (2011) GoDec: Randomized low-rank and sparse matrix decomposition in noisy case, Proceedings of the 28th International Conference on Machine Learning, pp. 33–40

  8. Delgado KK, Murray JF, Rao BD (2003) Dictionary learning algorithms for sparse representation. Neural Comput 15:349–396

    Article  MATH  Google Scholar 

  9. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MATH  MathSciNet  Google Scholar 

  10. Donoho DL, Huo XM (2001) Uncertainty principles and ideal atomic decomposition. IEEE Trans Inf Theory 47(7):2845–2862

    Article  MATH  MathSciNet  Google Scholar 

  11. Donoho DL, Tsaig Y (2006) Extensions of compressed sensing [J]. Signal Process 86(3):533–548

    Article  MATH  Google Scholar 

  12. Donoho DL, Tsaig Y (2008) Fast solution of l 1-norm minimization problems when the solution may be sparse. IEEE Trans Inf Theory 54(11):4789–812

    Article  MATH  MathSciNet  Google Scholar 

  13. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Signal Process 15(12):3736–3745

    MathSciNet  Google Scholar 

  14. Liu W, Yu Z, Yang M, Lu L, Zou Y (2015) Joint kernel dictionary and classifier learning for sparse coding via locality preserving K-SVD, in: Proceedings of IEEE International Conference on Mutimedia and Expo (ICME), pp.1-6

  15. Liu XM, Zhai DM, Zhao DB, Gao W (2013) Image super-resolution via hierarchical and collaborative sparse representation. In: Proceedings of the 2013 Data Compression Conference. Snowbird, USA: IEEE, 93–102

  16. Mailhe B, Barchiesi D, Plumbley MD (2012) INK-SVD: learning incoherent dictionaries for sparse representation. In: Proceedings of the 2012 International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Kyoto, Japan, USA: IEEE, 3573–3576

  17. Protter M, Elad M (2009) Image sequence denoising via sparse and redundant representations. IEEE Trans Image Process 18(1):27–36

    Article  MATH  MathSciNet  Google Scholar 

  18. Ravishankar S, Bresler Y (2011) MR image reconstruction from highly undersampled K-space data by dictionary learning. IEEE Trans Med Imaging 30(5):1028–1041

    Article  Google Scholar 

  19. ROWEISS (1998) EM algorithms for PCA and SPCA [C] // Proceedings of the 1997 Conference on Advances in Neural Information Processing System. Cambridge: Press, 626-632

  20. Rubinstein R, Bruckstein A, Elad M (2010) Dictionaries for sparse representation modeling. Proc IEEE 98(6):1045–1057

    Article  Google Scholar 

  21. Rubinstein R, Zibulevsky M, Elad M (2010) Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Trans Signal Process 58(3):1553–1564

    Article  MathSciNet  Google Scholar 

  22. Zhang Q and Li B (2010) “Discriminative K-SVD for dictionary learning in face recognition,” in Proc. IEEE Conf. CVPR, pp. 2691–2698

  23. Zhang L, Zhang L, Mou X, Zhang D (2012) FSIM: a feature SIMilarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhang J, Zhao C, Zhao D et al (2014) Image compressive sensing recovery using adaptively learned sparsifying basis via l 0 minimization [J]. Signal Process 103(10):114–126

    Article  Google Scholar 

  25. Zheng H, Tao D (2015) Discriminative dictionary learning via fisher discrimination K-SVD algorithm. Neurocomputing 162:9–15

    Article  Google Scholar 

  26. Zhou FF and Li L (2015) A novel K-RBP dictionary learning algorithm for video image sparse representation, Journal of Computational Information Systems, vol. 11 (1), pp.1-11

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (Granted No. 61070234, 61071167, 61373137, 61501251), university graduate student research innovation project of Jiangsu province in 2014 (Granted NO. KYZZ_0233) and in 2015 (Granted NO. KYZZ15_0235) and the NUPTSF (Granted No. NY214191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Li, L., Yang, Z. et al. An AK-BRP dictionary learning algorithm for video frame sparse representation in compressed sensing. Multimed Tools Appl 76, 23739–23755 (2017). https://doi.org/10.1007/s11042-016-4134-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4134-3

Keywords

Navigation