Multimedia Tools and Applications

, Volume 76, Issue 20, pp 21565–21577 | Cite as

Classification of archaeological pottery profiles using modal analysis

  • M. LucenaEmail author
  • J. M. Fuertes
  • A. L. Martínez-Carrillo
  • A. Ruiz
  • F. Carrascosa


We propose a new vessel profile characterization and comparison technique, based on Modal Analysis. Each profile is represented as a node chain that approximates its contour, and characterized by calculating its deformation spectrum, i.e. the amount of deformation needed to transform it into a reference shape. Two profiles can be compared by computing the Euclidean Distance between their corresponding deformation spectrum vectors. We have done our supervised classification experiments with a profile database labeled by experts. Success rates, which exceed 89 %, are better than the ones obtained by other techniques, while maintaining a low computational cost. Our results suggest that the proposed descriptor captures the morphological features of a given profile.


Pottery profiles Typologies Shape matching Modal analysis 



This work was has been supported by the Excellent Projects Program of CICE (regional government), the European Union ERDF funds under research projects P07-TIC-02773, and the Computer Graphics and Geomatics Research Group (TIC-144) of the University of Jaén.


  1. 1.
    Alex Pentland SS (1991) Closed-form solutions for physically based shape modeling and recognition. Pattern Anal Mach Intell 13(7):715–729CrossRefGoogle Scholar
  2. 2.
    Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522CrossRefGoogle Scholar
  3. 3.
    Chapa T, Pereira J, Madrigal A, Mayoral V (1997) La Necrópolis ibérica de Castellones de Ceal, (Hinojares Jaén). Consejeria de Cultura. Junta de AndaluciaGoogle Scholar
  4. 4.
    Fuertes J, Lucena M, de la Blanca N, Ruiz N (2003) Objects matching combining color and shape. In: 4th EURASIP Conference focused on Video/Image Processing and Multimedia Communications. doi: 10.1109/VIPMC.2003.1220462, vol 1, pp 201–208
  5. 5.
    Fuertes J, Lucena M, de la Blanca NP, Fdez-Valdivia J (2001) Combining morphological filters and deformable models to design a 2d shape based retrieval system. In: 12th Scandinavian Conference on Image Analysis (SCIA 2001), vol 1. Bergen, Norway, pp 646–653Google Scholar
  6. 6.
    Kampel MRS (2003) An automated pottery archival and reconstruction system. J Visual Comp Animat 14(3):111–120CrossRefGoogle Scholar
  7. 7.
    Karasik A, Smilansky U (2011) Computerized morphological classification of ceramics. J Archaeol Sci 38(10):2644–2657CrossRefGoogle Scholar
  8. 8.
    Lucena M, Martínez-Carrillo AL, Fuertes J, Carrascosa F, Ruiz A (2014) Decision support system for classifying archaeological pottery profiles based on mathematical morphology. Multimedia Tools and its Applications. doi: 10.1007/s11042-014-2063-6
  9. 9.
    Lucena M, Martínez-Carrillo AL, Fuertes JM, Carrascosa F, Ruiz A (2014) Applying Mathematical Morphology for the classification of Iberian ceramics from the Upper Valley of Guadalquivir River. In: Martínez-Trinidad JF, Carrasco-Ochoa JA, Olvera-Lopez JA, Salas-Rodríguez J, Suen C (eds) Pattern Recognition, Lecture Notes in Computer Science. doi: 10.1007/978-3-319-07491-7_35, vol 8495. Springer International Publishing, pp 341–350
  10. 10.
    Maaten L, Lange G, Boon P (2009) Visualization and automatic typology construction of pottery profiles. In: Frischer B (ed) Making history interactive: computer applications and quantitative methods in archaeology (CAA), BAR International Series, vol 2079. Archaeopress, Oxford u.a, pp 356–362Google Scholar
  11. 11.
    Mom V (2006) Where did i see you before. holistic method to compare and find archaeological artifacts. In: Decker R, Lenz H (eds) Advances in Data Analysis. Proceedings of the 30th Annual Conference of the Gesellschaft für Klassifikation. Springer, Freie Universität BerlinGoogle Scholar
  12. 12.
    Mom V (2007) SECANTO - The Section Analysis Tool. In: Figueiredo A, Velho GL (eds) The world is in your eyes. CAA2005. Computer Applications and Quantitative Methods in Archaeology. Tomar, Portugal, pp 95–101Google Scholar
  13. 13.
    Nastar C, Ayache N (1996) Frequency-based nonrigid motion analysis: Application to four dimensional medical images. IEEE Trans Pattern Anal Mach Intell:1067–1079Google Scholar
  14. 14.
    Nautiyal V, Kaushik VD, Pathak VK, Dhande S, Nautiyal S, Naithani M, Juyal S, Gupta RK, Vasisth AK, Verna KK, Singh A (2006) Geometric modeling of Indian archaeological pottery: A preliminary study. In: Clark J, Hagemeister E (eds) Exploring New Frontiers in Human Heritage. CAA2006. Computer Applications and Quantitative Methods in Archaeology. Fargo, United StatesGoogle Scholar
  15. 15.
    Pereira Sieso J (1989) La cerámica ibérica de la cuenca del Guadalquivir. Trab Prehist 46:149–159CrossRefGoogle Scholar
  16. 16.
    Rice PM (1987) Pottery Analysis. University of Chicago Press, ChicagoGoogle Scholar
  17. 17.
    Roweis ST, Saul LK (2000) Nonlinear Dimensionality Reduction by Locally Linear Embedding Science. Proc Am Assoc Adv Sci 290:2323–2326Google Scholar
  18. 18.
    Ruiz Rodríguez A, Hornos Mata F, Choclán C, Cruz Garrido J (1984) La necrópolis ibérica Finca Gil de Olid (Puente del Obispo-Baeza). Cuadernos de Prehistoria de la Universidad de Granada 9:195– 234Google Scholar
  19. 19.
    Ruiz Rodríguez A, Molinos M, López J, Crespo J, Choclán C, Hornos F (1983) El horizonte ibérico antiguo del Cerro de la Coronilla (Cazalilla, Jaén). Cortes A y F. Cuadernos de Prehistoria de la Universidad de Granada 8:251–295Google Scholar
  20. 20.
    Saragusti I, Karasik A, Sharon I, Smilansky U (2005) Quantitative analysis of shape attributes based on contours and section profiles in artifact analysis. J Archaeol Sci 32(6):841–853CrossRefGoogle Scholar
  21. 21.
    Shennan S, Wilcock J (1975) Shape and style variation in central german bell beakers. Science and Archaeology 15:17–31Google Scholar
  22. 22.
    Tenenbaum JB, Silva VD, Langford JC (2000) A Global Geometric Framework for Nonlinear Dimensionality Reduction Science. Am Assoc Adv Sci 290:2319–2323Google Scholar
  23. 23.
    Zhang Z, Zha H (2002) Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment. SIAM J Sci Comput 26:313–338CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Lucena
    • 1
    Email author
  • J. M. Fuertes
    • 1
  • A. L. Martínez-Carrillo
    • 2
  • A. Ruiz
    • 2
  • F. Carrascosa
    • 1
  1. 1.Department of Computer ScienceUniversity of JaénJaénSpain
  2. 2.Research University Institute for Iberian ArchaeologyUniversity of JaénJaénSpain

Personalised recommendations