Skip to main content
Log in

A rapid multi-source shortest path algorithm for interactive image segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper addresses the problem of performing multiple objects, interactive image segmentation. Given a small number of pixels (seeds) with predefined labels, we can quickly and accurately determine the closest seed from each unlabeled pixel. By assigning each pixel to the label same as its closest seed, a rapid image segmentation result can be obtained. Since the shortest distance is considered in this paper which directs our attention of segmentation into path planning problem, Dijkstra occurs to mind. Modifying the classical single-source algorithm, a simple yet rapid multi-source Dijkstra (MSD) algorithm is put forward. From both theoretical and experimental aspects, the proposed algorithm performs quite well in resisting noise, and preserving the objects details. Moreover, under the situation of multiple sources, instead of performing Dijkstra several times to obtain the distance from each pixel to each seed and choose the closest seed, the proposed multi-source image segmentation algorithm could determine the closest seed by running Dijkstra only once. Its efficiency, which will not be affected by the number of initial seed settings, maintains the same as the Dijkstra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Arandjelovic O (2013) Live-wire 3D medical images segmentation[J]. Computer Science

  2. Arias A, Petersen J, Van EA et al (2015) Carotid artery wall segmentation in multispectral MRI by coupled optimal surface graph cuts.[J]. IEEE Trans Med Imaging 35(3):1–1

    Google Scholar 

  3. Barrett WA, Mortensen EN (1997) Interactive live-wire boundary extraction[J]. Med Image Anal 1(4):331–341

    Article  Google Scholar 

  4. Boykov Y, Funka-Lea G (2006) Graph cuts and efficient nd image segmentation[J]. Int J Comput Vis 70(2):109–131

    Article  Google Scholar 

  5. Dong X, Shen J, Shao L et al (2015) Sub-Markov random walk for image segmentation[J]. IEEE Trans Image Process 25(2):516–527

    Article  MathSciNet  Google Scholar 

  6. Ducournau A, Bretto A (2014) Random walks in directed hypergraphs and application to semi-supervised image segmentation[J]. Comput Vis Image Underst 120:91–102

    Article  Google Scholar 

  7. Eelke V, Keuken MC, Gwenaëlle D et al (2016) Automatic segmentation of the striatum and globus pallidus using MIST: multimodal image segmentation tool[J]. Neuroimage 125:479–497

    Article  Google Scholar 

  8. Galceran E, Carreras M (2013) A survey on coverage path planning for robotics[J]. Robot Auton Syst 61(12):1258–1276

    Article  Google Scholar 

  9. Gong M, Tian D, Su L et al (2015) An efficient bi-convex fuzzy variational image segmentation method[J]. Inf Sci 293(293):351–369

    Article  MATH  Google Scholar 

  10. Grady L (2006) Random walks for image segmentation, pattern analysis and machine intelligence[J]. IEEE Trans on 28(11):1768–1783

    Google Scholar 

  11. Haralick BRM, Shapiro LG (2015) Survey: image segmentation techniques[J]. Comput Vision Graphics & Image Proc 29(1):100–132

    Article  Google Scholar 

  12. Jha SK, Bannerjee P, Banik S (2013) Random walks based image segmentation using color space graphs[J]. Procedia Technol 10(10):271–278

    Article  Google Scholar 

  13. Jin S, Wang S, Li X (2014) Typhoon eye extraction with an automatic SAR image segmentation method[J]. Int J Remote Sens 35(11–12):3978–3993

    Article  Google Scholar 

  14. Katsigiannis S, Zacharia E, Maroulis D (2014) Grow-Cut based automatic cDNA microarray image segmentation.[J]. IEEE Trans Nanobioscience 14(1):138–145

    Article  Google Scholar 

  15. Knuth DE (2015) A generalization of Dijkstra's algorithm[J]. Inf Process Lett 6(1):1–5

    Article  MathSciNet  MATH  Google Scholar 

  16. Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to mri[J]. Image Proc IEEE Trans on 20(7):2007–2016

    Article  MathSciNet  Google Scholar 

  17. Mahapatra D, Buhmann JM, Prostate MRI (2014) Segmentation using learned semantic knowledge and graph cuts.[J]. IEEE Trans Bio-medical Eng 61(3):756–764

    Article  Google Scholar 

  18. Treiber MA (2013) Graph cuts[J]. Adv Comput Vis Pattern Recognit 27(5):177–220

    Google Scholar 

  19. Wechsler H, Kidode M (1979) A random walk procedure for texture discrimination[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (3):272–280.

  20. Wu Z, Leahy R (1993) An optimal graph theoretic approach to data clustering: theory and its application to image segmentation[J]. Patt Anal Machine Intell , IEEE Trans on 15(11):1101–1113

    Article  Google Scholar 

  21. Xu Z, Huang TZ, Wang H et al (2015) Variant of the region-scalable fitting energy for image segmentation[J]. J Opt Soc Am A 32(3):463–470

    Article  Google Scholar 

  22. Yang X, Su Y, Duan R et al (2016) Cardiac image segmentation by random walks with dynamic shape constraint[J]. IET Comput Vis 10(1):79–86

    Article  Google Scholar 

  23. Yao F U, Wang J F, Gao L, et al (2015) Lung Field Segmentation Based on ASM and GrabCut on DR Image[J]. Modern Computer

  24. Zhang L, Kong H, Chin CT et al (2014) Segmentation of cytoplasm and nuclei of abnormal cells in cervical cytology using global and local graph cuts.[J]. Comput Med Imaging & Graph Off J Comput Med Imaging Soc 38(5):369–380

    Article  Google Scholar 

  25. Zhu Q, Liu G, Mei Z et al (2013) Perfect snapping: an accurate and efficient interactive image segmentation algorithm[J]. Applied Math Inf Scie 7(4):1387–1393

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported in part by National Natural Science Foundation of China (No. 61100143, 61272353, 61370128), Program for New Century Excellent Talents in University (NCET-13-0659), Beijing Higher Education Young Elite Teacher Project (YETP0583), and Fundamental Research Funds for the Central Universities (2014JBZ004, 2015RC031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Lu, W. & Xing, W. A rapid multi-source shortest path algorithm for interactive image segmentation. Multimed Tools Appl 76, 21547–21563 (2017). https://doi.org/10.1007/s11042-016-4073-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4073-z

Keywords

Navigation