Skip to main content
Log in

Robust tracking of fish schools using CNN for head identification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Tracking individuals in a fish school with video cameras is one of the most effective ways to quantitatively investigate their behavior which is of great value for biological research. However, tracking large numbers of fish with complex non-rigid deformation, similar appearance and frequent mutual occlusions is a challenge task. In this paper we propose an effective tracking method that can reliably track a large number of fish throughout the entire duration. The first step of the proposed method is to detect fish heads using a scale-space method. Data association across frames is achieved via identifying the head image pattern of each individual fish in each frame, which is accomplished by a convolutional neural network (CNN) specially tailored to suit this task. Then the prediction of the motion state and the recognition result by CNN are combined to associate detections across frames. The proposed method was tested on 5 video clips having different number of fish respectively. Experiment results show that the correctness of their identities is not affected by frequent occlusions. The proposed method outperforms two state-of-the-art fish tracking methods in terms of 7 performance metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andriluka M, Roth S, Schiele B (2008) People-tracking-by-detection and people-detection-by-tracking. In: IEEE Conference on computer vision and pattern recognition, 2008. CVPR 2008. IEEE, pp 1–8

  2. Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  3. Bercla J, Fleuret F, Fua P (2006) Robust people tracking with global trajectory optimization. In: 2006 IEEE Computer society conference on computer vision and pattern recognition, vol 1. IEEE, pp 744– 750

  4. Bruyndoncx L, Knaepkens G, Meeus W, Bervoets L, Eens M (2002) The evaluation of passive integrated transponder (pit) tags and visible implant elastomer (vie) marks as new marking techniques for the bullhead. J Fish Biol 60(1):260–262

    Article  Google Scholar 

  5. Butail S, Paley DA (2012) Three-dimensional reconstruction of the fast-start swimming kinematics of densely schooling fish. J R Soc Interf 9(66):77–88

    Article  Google Scholar 

  6. Chen Y, Yang X, Zhong B, Pan S, Chen D, Zhang H (2015) Cnntracker: online discriminative object tracking via deep convolutional neural network. Appl Soft Comput

  7. Ciresan D, Giusti A, Gambardella L M, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in neural information processing systems, pp 2843–2851

  8. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE Computer society conference on computer vision and pattern recognition, 2005. CVPR 2005, vol 1. IEEE, pp 886–893

  9. Delcourt J, Becco C, Ylieff M, Caps H, Vandewalle N, Poncin P (2006) Comparing the ethovision 2.3 system and a new computerized multitracking prototype system to measure the swimming behavior in fry fish. Behav Res Methods 38(4):704–710. doi:http://dx.doi.org/10.3758/BF03193904

    Article  Google Scholar 

  10. Delcourt J, Ylieff M, Bolliet V, Poncin P, Bardonnet A (2011) Video tracking in the extreme: a new possibility for tracking nocturnal underwater transparent animals with fluorescent elastomer tags. Behav Res Methods 43(2):590–600

    Article  Google Scholar 

  11. Delcourt J, Denoël M, Ylieff M, Poncin P (2013) Video multitracking of fish behaviour: a synthesis and future perspectives. Fish Fish 14(2):186–204

    Article  Google Scholar 

  12. Fan J, Xu W, Wu Y, Gong Y (2010) Human tracking using convolutional neural networks. IEEE Trans Neural Netw 21(10):1610–1623

    Article  Google Scholar 

  13. Fontaine EI (2008) Automated visual tracking for behavioral analysis of biological model organisms. Ph.D. thesis. California Institute of Technology

  14. Fontaine E, Lentink D, Kranenbarg S, Müller UK, van Leeuwen JL, Barr AH, Burdick JW (2008) Automated visual tracking for studying the ontogeny of zebrafish swimming. J Exp Biol 211(8):1305–1316

    Article  Google Scholar 

  15. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on computer vision and pattern recognition (CVPR). IEEE, pp 580–587

  16. Guo Y, Chen Y, Tang F, Li A, Luo W, Liu M (2014) Object tracking using learned feature manifolds. Comput Vis Image Understand 118:128–139

    Article  Google Scholar 

  17. Hinton G, Deng L, Yu D, Dahl GE, Mohamed Ar, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN et al (2012) Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Process Mag IEEE 29(6):82–97

    Article  Google Scholar 

  18. Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International conference on computer vision. IEEE, pp 2146–2153

  19. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

  20. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  21. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  22. Li Y, Huang C, Nevatia R (2009) Learning to associate: hybridboosted multi-target tracker for crowded scene. In: IEEE Conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE, pp 2953–2960

  23. Li H, Li Y, Porikli F (2015) Robust online visual tracking with a single convolutional neural network. In: Computer vision–ACCV 2014. Springer, pp 194–209

  24. Liu J, Hu H (2010) Biological inspiration: from carangiform fish to multi-joint robotic fish. J Bionic Eng 7(1):35–48. doi:10.1016/S1672-6529(09)60184-0

    Article  Google Scholar 

  25. Miller N, Gerlai R (2007) Quantification of shoaling behaviour in zebrafish (danio rerio). Behav Brain Res 184(2):157–166

    Article  Google Scholar 

  26. Miller N, Gerlai R (2012) Automated tracking of zebrafish shoals and the analysis of shoaling behavior. In: Zebrafish protocols for neurobehavioral research. Springer, pp 217–230

  27. Noldus LP, Spink AJ, Tegelenbosch RA (2001) Ethovision: a versatile video tracking system for automation of behavioral experiments. Behav Res Methods 33(3):398–414

    Article  Google Scholar 

  28. Pérez-Escudero A, Vicente-Page J, Hinz R, Arganda S, de Polavieja G (2014) idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 11(7):743–751. doi:10.1038/NMETH.2994

    Article  Google Scholar 

  29. Pirsiavash H, Ramanan D, Fowlkes CC (2011) Globally-optimal greedy algorithms for tracking a variable number of objects. In: 2011 IEEE Conference on computer vision and pattern recognition (CVPR). IEEE, pp 1201–1208

  30. Qian Z, Cheng X, Chen Y (2014) Automatically detect and track multiple fish swimming in shallow water with frequent occlusion. PLoS ONE 9(9):e106,506. doi:10.1371/journal.pone.0106506

    Article  Google Scholar 

  31. Reid DB (1979) An algorithm for tracking multiple targets. IEEE Trans Autom Control 24(6):843–854

    Article  Google Scholar 

  32. Rosemberg D, Braga M, Rico E, Loss C, Córdova S, Mussulini B et al (2012) Behavioral effects of taurine pretreatment in zebrafish acutely exposed to ethanol. Neuropharmacology 63(4):613–623

    Article  Google Scholar 

  33. Rosenthal SB, Twomey CR, Hartnett AT, Wu HS, Couzin ID (2015) Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc Nat Acad Sci 112(15):4690–4695

    Article  Google Scholar 

  34. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2013) Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229

  35. Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detection. In: Advances in neural information processing systems, pp 2553–2561

  36. Vedaldi A, Lenc K (2014) Matconvnet-convolutional neural networks for matlab. arXiv:1412.4564

  37. Wang T, Wu DJ, Coates A, Ng AY (2012) End-to-end text recognition with convolutional neural networks. In: 2012 21st International conference on pattern recognition (ICPR). IEEE, pp 3304–3308

  38. Yu Q, Medioni G, Cohen I (2007) Multiple target tracking using spatio-temporal markov chain monte carlo data association. In: IEEE Conference on computer vision and pattern recognition, 2007. CVPR’07. IEEE, pp 1–8

  39. Zhou X, Xie L, Zhang P (2015) Online object tracking based on cnn with metropolis-hasting re-sampling. In: Proceedings of the ACM international conference on multimedia. ACM, pp 1–4

Download references

Acknowledgments

The authors would like to thank Ye Liu for the valuable discussions and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qiu Chen.

Additional information

Thanks to National Natural Science Foundation of China, Grant No.61175036 for funding.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 23.2 MB)

(MP4 65.3 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S.H., Zhao, J.W. & Chen, Y.Q. Robust tracking of fish schools using CNN for head identification. Multimed Tools Appl 76, 23679–23697 (2017). https://doi.org/10.1007/s11042-016-4045-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4045-3

Keywords

Navigation