Skip to main content

Advertisement

Log in

An adaptive plant leaf mobile informatics using RSSC

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

An automated plant biometric system is now an important step in preserving nature’s biodiversity. This paper presents a novel Relative Sub-image Sparse Coefficient (RSSC) algorithm for mobile devices (MDs) representing plant leaves into a mathematically compact vector for its classification. The RSSC feature vector includes local Statistical Entropy Texture (SET) information inter-related to all the sub-images within a leaf. RSSC space is merged with Gray Level Co-occurrence Matrix (GLCM) feature to refine the outputs using best-Nearest Neighbor (best-NN), designed for MDs. The experiments were performed on three different types of leaf datasets: (i) Flavia, (ii) ICL and (iii) Diseased leaf datasets. The results proves our method more accurate and better compared to other existing plant identification systems. The proposed approach is also tolerant under shape distortion caused while capturing. The mobile machine learning system for leaf image informatics is deployed on Android devices which helps botanists, agriculturists and medical biologists to recognize ubiquitously the herbs and plant species anywhere-anytime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Adamek T, O’Connor N E (2004) A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans Circ Syst Video Technol 14(5):742–753

    Article  Google Scholar 

  2. Alajlan N, El Rube I, Kamel M S, Freeman G (2007) Shape retrieval using triangle-area representation and dynamic space warping. Pattern Recogn 40 (7):1911–1920

    Article  MATH  Google Scholar 

  3. Backes A R, Gonċalves W N, Martinez A S, Bruno O M (2010) Texture analysis and classification using deterministic tourist walk. Pattern Recogn 43(3):685–694

    Article  MATH  Google Scholar 

  4. Bai X, Yang X, Latecki L J, Liu W, Tu Z (2010) Learning context-sensitive shape similarity by graph transduction. IEEE Trans Pattern Anal Mach Intell 32 (5):861–874

    Article  Google Scholar 

  5. Barrera M, Andrade M, Kim H Y (2012) Texture-based fuzzy system for rotation-invariant classification of aerial orthoimage regions. jip 1(1):4

    Google Scholar 

  6. C V N I (2014) Cisco: global mobile data traffic forecast update, 2013-2018. White Paper, pp 1–40

  7. Clark J Y (2009) Neural networks and cluster analysis for unsupervised classification of cultivated species of tilia (malvaceae). Botan J Linnean Soc 159(2):300–314

    Article  MathSciNet  Google Scholar 

  8. Cope J S, Remagnino P, Barman S, Wilkin P (2010) Plant texture classification using gabor co-occurrences. In: International Symposium on Visual Computing. Springer Berlin Heidelberg, pp 669–677

  9. Cope J S, Corney D, Clark J Y, Remagnino P, Wilkin P (2012) Plant species identification using digital morphometrics: a review. Expert Syst Appl 39 (8):7562–7573

    Article  Google Scholar 

  10. Deypir M, Boostani R, Zoughi T (2012) Ensemble based multi-linear discriminant analysis with boosting and nearest neighbor. Scientia Iranica 19(3):654–661

    Article  Google Scholar 

  11. Flavia leave dataset. http://flavia.sourceforge.net/. Accessed: 2012-10-14

  12. Goëau H, Bonnet P, Joly A, Bakic V, Barthélémy D, Boujemaa N, Molino J-F (2013) The imageclef 2013 plant identification task. In: CLEF

  13. Goëau H, Bonnet P, Joly A, Boujemaa N, Barthélémy D, Molino J-F, Birnbaum P, Mouysset E, Picard M (2011) The imageclef 2011 plant images classi cation task. In: ImageCLEF 2011, pp 0–0

  14. Govaerts R (2001) How many species of seed plants are there? Taxon 50 (4):1085–1090

    Article  Google Scholar 

  15. Haralick R M, Shanmugam K, Dinstein I H (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Article  Google Scholar 

  16. Hearn D J (2009) Shape analysis for the automated identification of plants from images of leaves. Taxon 58(3):934–954

    Google Scholar 

  17. Intelligent computing laboratory. http://www.intelengine.cn/English/dataset. Accessed: 2012

  18. Kim T, Bae N-J, Shin C-S, Park J W, Park D, Cho Y-Y (2013) An approach for a self-growing agricultural knowledge cloud in smart agriculture. In: Multimedia and ubiquitous engineering. Springer, pp 699– 706

  19. Kumar N, Belhumeur P N, Biswas A, Jacobs D W, Kress W J, Lopez I C, Soares J V (2012) Leafsnap: a computer vision system for automatic plant species identification. In: Computer vision–ECCV 2012. Springer, pp 502–516

  20. Laga H, Kurtek S, Srivastava A, Golzarian M, Miklavcic S J (2012) A riemannian elastic metric for shape-based plant leaf classification. In: 2012 International conference on digital image computing techniques and applications (DICTA). IEEE, pp 1–7

  21. Lee C-L, Chen S-Y (2006) Classification of leaf images. Int J Imag Syst Technol 16(1):15–23

    Article  Google Scholar 

  22. Li Y, Chi Z, Feng D D (2006) Leaf vein extraction using independent component analysis. In: IEEE International conference on systems, man and cybernetics, 2006. SMC’06, vol 5. IEEE, pp 3890– 3894

  23. Ling H, Jacobs D W (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):286–299

    Article  Google Scholar 

  24. Marino S M W D M, Feiner S K Leafview: a user interface for automated botanical species identification and data collection

  25. Mouine S, Yahiaoui I, Verroust-Blondet A (2013) A shape-based approach for leaf classification using multiscaletriangular representation. In: Proceedings of the 3rd ACM conference on international conference on multimedia retrieval. ACM, pp 127–134

  26. Mullen R J, Monekosso D, Barman S, Remagnino P, Wilkin P (2008) Artificial ants to extract leaf outlines and primary venation patterns. In: Ant colony optimization and swarm intelligence. Springer, pp 251–258

  27. Neto J C, Meyer G E, Jones D D, Samal A K (2006) Plant species identification using elliptic fourier leaf shape analysis. Comput Electron Agri 50(2):121–134

    Article  Google Scholar 

  28. Prasad S, Kumar P, Tripathi R (2011) Plant leaf species identification using curvelet transform. In: 2011 2nd International conference on computer and communication technology (ICCCT). IEEE, pp 646– 652

  29. Prasad S, Kudiri K M, Tripathi R (2011) Relative sub-image based features for leaf recognition using support vector machine. In: Proceedings of the 2011 international conference on communication, computing & security. ACM, pp 343–346

  30. Prasad S, Peddoju S K, Ghosh D (2013) Agromobile: a cloud-based framework for agriculturists on mobile platform. Int J Adv Sci Technol 59:41–52

    Article  Google Scholar 

  31. Prasad S, Peddoju S K, Ghosh D (2013) Mobile plant species classification: a low computational aproach. In: 2013 IEEE Second international conference on image information processing (ICIIP). IEEE, pp 405–409

  32. Prasad S, Peddoju S K, Ghosh D (2014) Energy efficient mobile vision system for plant leaf disease identification. In: Wireless communications and networking conference (WCNC), 2014 IEEE. IEEE, pp 3314–3319

  33. Prasad S, Peddoju S K, Ghosh D (2016) Multi-resolution mobile vision system for plant leaf disease diagnosis. Signal Image Video Process 10(2):379–388

    Article  Google Scholar 

  34. Prasad S, Peddoju S K, Ghosh D (in press) Agriculture-as-a-service. IEEE Potentials, Accepted

  35. Wang B, Gao Y (2014) Hierarchical string cuts: a translation, rotation, scale, and mirror invariant descriptor for fast shape retrieval. IEEE Trans Image Process 23 (9):4101–4111

    Article  MathSciNet  Google Scholar 

  36. Wang Z, Chi Z, Feng D (2003) Shape based leaf image retrieval. In: IEEE Proceedings vision, image and signal processing, vol 150. IET, pp 34–43

  37. Wang B, Brown D, Gao Y, La Salle J (2015) March: multiscale-arch-height description for mobile retrieval of leaf images. Inf Sci 302:132–148

    Article  Google Scholar 

  38. Warren D (1997) Automated leaf shape description for variety testing in chrysanthemums. In: Sixth international conference on image processing and its applications, vol 2. IET, pp 497–501

  39. White S, Feiner S, Kopylec J (2006) Virtual vouchers: prototyping a mobile augmented reality user interface for botanical species identification. In: IEEE symposium on 3D user interfaces, 2006. 3DUI 2006. IEEE, pp 119–126

  40. White S M, Marino D, Feiner S (2007) Designing a mobile user interface for automated species identification. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 291–294

  41. Wu S G, Bao F S, Xu E Y, Wang Y-X, Chang Y-F, Xiang Q-L (2007) A leaf recognition algorithm for plant classification using probabilistic neural network. In: 2007 IEEE International symposium on signal processing and information technology. IEEE, pp 11–16

  42. Yanikoglu B, Aptoula E, Tirkaz C (2014) Automatic plant identification from photographs. Mach Vis Appl 25(6):1369–1383

    Article  Google Scholar 

  43. Zhao Z-Q, Ma L-H, Y-m Cheung X Wu, Tang Y, Chen C L P (2015) Apleaf: an efficient android-based plant leaf identification system. Neurocomputing 151:1112–1119

    Article  Google Scholar 

  44. Zulkifli Z, Saad P, Mohtar I A (2011) Plant leaf identification using moment invariants & general regression neural network. In: 2011 11th International conference on hybrid intelligent systems (HIS). IEEE, pp 430–435

Download references

Acknowledgments

Authors would like to thank MHRD for financially supporting S. Prasad throughout his PhD work at IIT Roorkee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shitala Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, S., Peddoju, S.K. & Ghosh, D. An adaptive plant leaf mobile informatics using RSSC. Multimed Tools Appl 76, 21339–21363 (2017). https://doi.org/10.1007/s11042-016-4040-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4040-8

Keywords

Navigation