Multimedia Tools and Applications

, Volume 76, Issue 8, pp 10825–10835 | Cite as

Penalty-based haptic rendering technique on medicinal healthy dental detection



We present a penalty-based haptic rendering analysis method for medicinal dentistry diagnose simulation. The method is based on the locally optimized generalized penetration computation algorithm which computes the minimum translational and rotational motion to separate two overlapping objects. The essence of penalty-based haptic rendering method is computing an amount of penetration depth, and the output force magnitude is following the Hooke’s law. We use the virtual coupling method to calculate the output force and analysis the damping and stiffness coefficient in order to get a rendering force which optimizes the haptic feedback value and resolves the instability problems in haptic rendering system. Furthermore, we introduce friction force on different surface textures of the interacting objects. And successfully mapped the virtual contact results to force feedback and integrated the algorithm into the off-the-shelf 6Dof haptic device. The experiment result shows that our method can generate stable and realistic haptic feedback in dentistry diagnose simulation near ideal update rate.


Medicinal simulation Haptic rendering Texture surface Generalized penetration depth Friction 



This work is funded by Zhejiang Provincial Natural Science Foundation of China (No. LQ16F020007).We would thank the Graphics Lab of Ewha Womans University for the previous work: PolyDepth++ library.


  1. 1.
    Cameron SA, Culley RK (1986) Determining the minimum translational distance between two convex polyhedra. Proc IEEE Int Conf Robot Autom, 591–596Google Scholar
  2. 2.
    Dobkin D, Hershberger J, Kirkpatrick D, Suri S (1993) Computing the intersection-depth of polyhedra. Algorithmica 9:518–533MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ilhan EK, Ercument MO, Erkan M, Reha Sukru K (2010) Development of a visio-haptic integrated dental training simulation system. J Dent Educ 74(8):880–891Google Scholar
  4. 4.
    Je C, Tang M, Lee Y, Lee M, Kim YJ (2012) PolyDepth: real-time penetration depth computation using iterative contact-space projection. ACM Trans GraphGoogle Scholar
  5. 5.
    Kim YJ, Lin M, Manocha D (2004) Incremental penetration depth estimation between convex polytopes using dual-space expansion. IEEE Trans Visualization Comput Graph, 152–164Google Scholar
  6. 6.
    Kim YJ, Otaduy MA, Lin MC et al (2003) Six-degree-of-freedom haptic rendering using incremental and localized computations. Presence 12(3):277–295CrossRefGoogle Scholar
  7. 7.
    Kim YJ, Otaduy MA, Lin MC, Manocha D (2002) Fast penetration depth computation for physically-based animation. Proc ACM Symp Comput AnimationGoogle Scholar
  8. 8.
    Li Y, Tang M, Kim YJ, etc. (2013) Six-degree-of-freedom haptic rendering using translational and generalized penetration depth computation. IEEE World Haptic Conf, 289–294Google Scholar
  9. 9.
    Mcneely W, Puterbaugh K, Troy J (1999) Six degree-of-freedom haptic rendering using voxel sampling. Proc ACM SIGGRAPH, 401–408Google Scholar
  10. 10.
    Nawratil G, Pottmann H, Ravani B (2009) Generalized penetration depth computation based on kinematical geometry. Comput Aided Geom Des 26:425–443MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Nie L, Wang M, Zha Z-J, Li G, Chua T-S (2011) Multimedia answering: enriching text QA with media information. SIGIR: 695–704Google Scholar
  12. 12.
    Nie L, Wang M, Zhang L, Yan S, Zhang B, Chua T-S (2015) Disease inference from health-related questions via sparse deep learning. IEEE Trans Knowl Data Eng 27(8):2107–2119CrossRefGoogle Scholar
  13. 13.
    Nie L, Yan S, Wang M, Hong R, Chua T-S (2012) Harvesting visual concepts for image search with complex queries. ACM Multimed: 59–68Google Scholar
  14. 14.
    Nie L, Zhao Y-L, Akbari M, Shen J, Chua T-S (2015) Bridging the vocabulary gap between health seekers and healthcare knowledge. IEEE Trans Knowl Data Eng 27(2):396–409CrossRefGoogle Scholar
  15. 15.
    Ortega M, Redon S, Coquillart S A six degree-of-freedom god-object method for haptic display of rigid bodies. Proc IEEE Conf Virt Real, 191–198Google Scholar
  16. 16.
    Otaduy MA, Lin MC (2003) Sensation preserving simplification for haptic rendering. ACM Trans Graphics (Proc ACM SIGGRAPH), 543–553Google Scholar
  17. 17.
    Redon S, Lin MC (2006) A fast method for local penetration depth computation. J Graph Tools 11(2):37–50CrossRefGoogle Scholar
  18. 18.
    Ryden F, Chizeck HJ (2013) A proxy method for real time 3-DOF haptic rendering of streaming point cloud data. IEEE Trans Haptic, 257–267Google Scholar
  19. 19.
    Tang M, Kim YJ (2012) PolyDepth++: interactive generalized penetration depth computation for rigid and articulated models using object norm. Tech Rep CSE-TR-2012-01, Ewha Womans University, Seoul, KoreaGoogle Scholar
  20. 20.
    Tang M, Manocha D, Otaduy MA, Tong R (2012) Continuous penalty forces. ACM Trans Graph 31(4):107, 1–107:9 CrossRefGoogle Scholar
  21. 21.
    Wang D, Zhang Y, Hou J et al (2012) iDental: a haptic-based dental simulator and its preliminary user evaluation[J]. IEEE Trans Haptics 5(4):332–343CrossRefGoogle Scholar
  22. 22.
    Wang DX, Zhang YR, Yong W, Lü PJ, Zhou RG, Zhou WL (2009) Haptic rendering for dental training system. Sci Chin 52(3):529–546MATHGoogle Scholar
  23. 23.
    Wang D, Zhang X, Xiao J (2011) Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation. IEEE Int Conf Robot Automation (ICRA), 906–912Google Scholar
  24. 24.
    Wu J, Wang D, Zhang Y et al. (2011) Haptic display of rigid body contact using generalized penetration depth. Proc 4th Int Conf Intell Robot Appl, 532–541Google Scholar
  25. 25.
    Xiao WD, Ru ZY, Yu-hui W et al. (2004) Dental training system for probing operation with visual and force display. J Syst Simul, 1729–1734Google Scholar
  26. 26.
    Yu-gang C, Ru ZY, Xiao WD et al. (2007) Design and implementation of control system in haptic device for dental training system. J Syst Simul, 1086–1099Google Scholar
  27. 27.
    Zhang L, Gao Y, Ji R, Ke L, Shen J (2014) Representative discovery of structure cues for weakly-supervised image segmentation. IEEE Trans Multimed (T-MM) 16(2):470–479CrossRefGoogle Scholar
  28. 28.
    Zhang L, Gao Y, Zimmermann R, Tian Q, Li X (2014) Fusion of multi-channel local and global structural cues for photo aesthetics evaluation. IEEE Trans Image Process (T-IP) 23(3):1419–1429CrossRefGoogle Scholar
  29. 29.
    Zhang L, Han Y, Yang Y, Song M, Yan S, Tian Q (2013) Discovering discrminative graphlets for aerial image categories recognition. IEEE Trans Imag Process (T-IP) 22(12):5071–5084CrossRefGoogle Scholar
  30. 30.
    Zhang L, Hong R, Nie L, Hong C (2016) A biologically inspired automatic system for media quality assessment. IEEE Trans Automation Sci Eng 13(2):894–902CrossRefGoogle Scholar
  31. 31.
    Zhang L, Kim YJ, Varadhan G (2007) Generalized penetration depth computation. Comput Aided Des 39(8):625–638CrossRefGoogle Scholar
  32. 32.
    Zhang L, Song M, Liu X, Bu J, Chen C (2013) Fast multi-view segment graph kernel for object classification. Sign Process 93(6):1597–1607CrossRefGoogle Scholar
  33. 33.
    Zhang L, Song M, Liu Z, Liu X, Bu J, Chen C (2013) Probabilistic graphlet cut: exploring spatial structure cue for weakly supervised image segmentation. IEEE Comput Vision Pattern Recognit (CVPR)Google Scholar
  34. 34.
    Zhang L, Song M, Yang Y, Zhao Q, Chen Z, Sebe N (2014) Weekly supervised photo cropping. IEEE Trans Multimed (T-MM) 16(1):94–107CrossRefGoogle Scholar
  35. 35.
    Zhang L, Song M, Zhao Q, Liu X, Bu J, Chen C (2013) Probabilistic graphlet transfer for photo cropping. IEEE Trans Image Process (T-IP) 21(5):2887–2897Google Scholar
  36. 36.
    Zhang L, Yang Y, Gao Y, Wang C, Yu Y, Li X (2014) A probabilistic associative model for segmenting weakly-supervised images. IEEE Trans Imag Process (T-IP)Google Scholar
  37. 37.
    Zhang L, Yang Y, Gao Y, Wang C, Yu Y, Li X (2014) A probabilistic associative model for segmenting weakly-supervised images. IEEE Trans Imag Process (T-IP), 2014Google Scholar
  38. 38.
    Zilles CB, Salisbury JK (1995) A constraint-based god-object method for haptic display. Proc IEEE/RSJ Int Conf Intell Robots Syst, Pittsburgh, 146–151Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceWenzhou UniversityWenzhouChina
  2. 2.College of Computer Science and TechnologyZhejiang UniversityHangzhouChina

Personalised recommendations