A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding

Abstract

In the field of image analysis, segmentation is one of the most important preprocessing steps. One way to achieve segmentation is the use of threshold selection, where each pixel that belongs to a determined class, based on the mutual visual characteristics, is labeled according to the selected threshold. In this work, a combination of two pioneer methods, namely Otsu and Kapur, are investigated to solve the threshold selection problem. Optimum parameters of these objective functions are calculated using Bacterial Foraging (BF) optimization algorithm, for its accuracy, and Harmony Search (HS), for its speed. However, the biggest problem of soft computing family algorithms is catching into a local optimum. To resolve this critical issue, we investigate the power of Learning Automata (LA) which works as a controller to make switching between these two optimization methods. LA is a heuristic method which can solve complex optimization problems with interesting results in parameter estimation. Despite other techniques commonly seek through the parameter map, LA explores in the probability space, providing appropriate convergence properties and robustness. The proposed method is tested on benchmark images and shows fast convergence avoiding the typical sensitivity to initial conditions such as the Expectation-Maximization (EM) algorithm or the complex, and time-consuming computations which are commonly found in gradient methods. Experimental results demonstrate the algorithm’s ability to perform automatic multi-threshold selection and show interesting advantages as it is compared to other algorithms solving the same task.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Akay B (2013) A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput 13:3066–3091

    Article  Google Scholar 

  2. 2.

    Bhandari AK, Singh VK, Kumar A, Singh GK (2014) Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert SysT Appl 41:3538–3560

    Article  Google Scholar 

  3. 3.

    Brownlee J (2011) Clever algorithms: nature-inspired programming recipes, Jason Brownlee

  4. 4.

    Chen J, Pappas TN, Mojsilović A, Rogowitz BE (2005) Adaptive perceptual color-texture image segmentation. Imag Process, IEEE Trans 14:1524–1536

    Article  Google Scholar 

  5. 5.

    Cuevas E, Sossa H (2013) A comparison of nature inspired algorithms for multi-threshold image segmentation. Expert Syst Appl 40:1213–1219

    Article  Google Scholar 

  6. 6.

    Fan J, Yau DK, Elmagarmid AK, Aref WG (2001) Automatic image segmentation by integrating color-edge extraction and seeded region growing. Imag Process, IEEE Trans 10:1454–1466

    Article  MATH  Google Scholar 

  7. 7.

    Hammouche K, Diaf M, Siarry P (2008) A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput Vis Image Underst 109:163–175

    Article  Google Scholar 

  8. 8.

    Hill PR, Canagarajah CN, Bull DR (2003) Image segmentation using a texture gradient based watershed transform. Imag Process, IEEE Trans 12:1618–1633

    MathSciNet  Article  Google Scholar 

  9. 9.

    Horng M-H (2010) Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization. Expert Syst Appl 37:4580–4592

    Article  Google Scholar 

  10. 10.

    Kaddour N, Alexander PS (1994) Learning automata: theory and applications. Pergamon Press, Inc

  11. 11.

    Kapur JN, Sahoo PK, Wong AK (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vision, Graphics, Imag Process 29:273–285

    Article  Google Scholar 

  12. 12.

    Levine MD, Nazif AM (1985) Dynamic measurement of computer generated image segmentations. Pattern Anal Mach Intell, IEEE Trans 155–164

  13. 13.

    Liao P-S, Chen T-S, Chung P-C (2001) A fast algorithm for multilevel thresholding. J Inf Sci Eng 17:713–727

    Google Scholar 

  14. 14.

    Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Computer Vision, 2001. ICCV 2001. Proc Eighth IEEE Int Conf, IEEE. 416–423

  15. 15.

    Morand C, Benois-Pineau J, Domenger J-P, Zepeda J, Kijak E, Guillemot C (2010) Scalable object-based video retrieval in HD video databases. Signal Process Image Commun 25:450–465

    Article  Google Scholar 

  16. 16.

    Narendra KS, Thathachar M (1974) Learning automata-a survey. Syst, Man Cybernet, IEEE Trans 323–334

  17. 17.

    Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11:23–27

    Google Scholar 

  18. 18.

    Rother C, Kolmogorov V, Blake A (2004) Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans Graphics (TOG), ACM. 309–314

  19. 19.

    Sathya P, Kayalvizhi R (2011) Optimal multilevel thresholding using bacterial foraging algorithm. Expert Syst Appl 38:15549–15564

    Article  Google Scholar 

  20. 20.

    Sezgin M (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imag 13:146–168

    Article  Google Scholar 

  21. 21.

    Tao W, Jin H, Liu L (2007) Object segmentation using ant colony optimization algorithm and fuzzy entropy. Pattern Recogn Lett 28:788–796

    Article  Google Scholar 

  22. 22.

    Van der Merwe D, Engelbrecht AP (2003) Data clustering using particle swarm optimization. Evolution Comput, 2003. CEC’03. 2003 Congress, IEEE 215–220

  23. 23.

    Vantaram SR, Saber E (2012) Survey of contemporary trends in color image segmentation. J Electron Imag 21:040901–040928

    Article  Google Scholar 

  24. 24.

    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. Imag Process, IEEE Trans 13:600–612

    Article  Google Scholar 

  25. 25.

    Wang J, Ju L, Wang X (2009) An edge-weighted centroidal Voronoi tessellation model for image segmentation. Imag Process, IEEE Trans 18:1844–1858

    MathSciNet  Article  Google Scholar 

  26. 26.

    Yang X-S, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer Optim 1:330–343

    MATH  Google Scholar 

  27. 27.

    Yazdani D, Arabshahi A, Sepas-Moghaddam A, Dehshibi MM (2012) A multilevel thresholding method for image segmentation using a novel hybrid intelligent approach. Hybrid Intell Syst (HIS), 2012 12th Int Conf IEEE. 137–142

  28. 28.

    Yin P-Y (1999) A fast scheme for optimal thresholding using genetic algorithms. Signal Process 72:85–95

    Article  MATH  Google Scholar 

  29. 29.

    Yin P-Y (2007) Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Appl Math Comput 184:503–513

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Yu X, Bui T, Krzyżak A (1994) Robust estimation for range image segmentation and reconstruction. Pattern Anal Mach Intell, IEEE Trans 16:530–538

    Article  Google Scholar 

  31. 31.

    Zahara E, Fan S-KS, Tsai D-M (2005) Optimal multi-thresholding using a hybrid optimization approach. Pattern Recogn Lett 26:1082–1095

    Article  Google Scholar 

  32. 32.

    Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. Med Imag, IEEE Trans 20:45–57

    Article  Google Scholar 

  33. 33.

    Zhang Y, Wu L (2011) Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach. Entropy 13:841–859

    Article  MATH  Google Scholar 

  34. 34.

    Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. Imag Process, IEEE Trans 20:2378–2386

    MathSciNet  Article  Google Scholar 

  35. 35.

    Zuva T, Olugbara OO, Ojo SO, Ngwira SM (2011) Image segmentation, available techniques, developments and open issues. Canadian J Imag Process Comput Vision 2:20–29

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Mahdi Dehshibi or Mohamad Sourizaei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dehshibi, M., Sourizaei, M., Fazlali, M. et al. A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding. Multimed Tools Appl 76, 15951–15986 (2017). https://doi.org/10.1007/s11042-016-3891-3

Download citation

Keywords

  • Multilevel thresholding
  • Image segmentation
  • Hybrid optimization
  • Kapur function
  • Otsu function