Multimedia Tools and Applications

, Volume 76, Issue 8, pp 10839–10854 | Cite as

Cloud-assisted hugtive robot for affective interaction

  • Ping Zhou
  • Yixue Hao
  • Jun Yang
  • Wei Li
  • Lu Wang
  • Yiming Miao
  • Jeungeun Song


Owing to the quickening pace and increasing pressure of daily life, people pay more and more attention to life in spiritual level. However, the time for meeting relatives or friends in person is quite short, therefore, it is more and more important for remote emotional communication (i.e., emotional perception and interaction) between users. The existing remote interaction systems mainly pay attention to voice and video communication, and it is difficult to meet the emotional needs of people. How to realize remote emotional communication between different people still faces challenge. In order to cope with this challenge, cloud-assisted hugtive robot (CH-Robot) system is designed in this paper. More specifically, firstly a new-type hugtive robot is designed. Secondly data collected by smart phone and smart clothing are adopted to judge emotional status of user, then emotional communication between users is realized through CH-Robot. Finally, a specific application scene is presented where a mother who is on business in other places comforts her child at home, thus to verify feasibility and effectiveness of the system.


Emotion detection ECG Smartphone Robot 



This work is supported by the National Nature Science Foundation of China (No. 61572220).


  1. 1.
    Baltrusaitis T, Banda N, Robinson P (2013) Dimensional affect recognition using continuous conditional random fields. In: 2013 10th IEEE International conference and workshops on automatic face and gesture recognition (FG). IEEE, pp 1–8Google Scholar
  2. 2.
    Clavel C, Callejas Z (2015) Sentiment analysis: from opinion mining to human-agent interaction. In: IEEE Transactions on affective computingGoogle Scholar
  3. 3.
    Chen M, Song E, Guo D (2013) A novel multi-functional hugtive robotGoogle Scholar
  4. 4.
    Chen M, Hao Y, Li Y, Wu D, Huang D (2015) Demo: lives: learning through interactive video and emotion-aware system. In: Proceedings of the 16th ACM international symposium on mobile ad hoc networking and computing. ACM, pp 399–400Google Scholar
  5. 5.
    Chen M, Zhang Y, Hu L, Taleb T, Sheng Z (2015) Cloud-based wireless network: virtualized, reconfigurable, smart wireless network to enable 5G technologies. ACM/Springer Mobile Netw Appl 20(6):704–712CrossRefGoogle Scholar
  6. 6.
    Chen M, Zhang Y, Li Y, Hassan M, Alamri A A I W A C (2015) Affective interaction through wearable computing and cloud technology. IEEE Wireless Commun Mag 22(1):20–27CrossRefGoogle Scholar
  7. 7.
    Chen M, Zhang Y, Li Y, Mao S, Leung V E M C (2015) Emotion-aware mobile cloud computing in 5G. IEEE Netw 29:2CrossRefGoogle Scholar
  8. 8.
    Chen M, Hao M, Qiu J, Song Y, Wu D, Humar I (2016) Mobility-aware caching and computation offloading in 5G ultradense cellular networks. Sensors 16 (7):974CrossRefGoogle Scholar
  9. 9.
    Chen M, Ma Y, Song J, Lai C, Hu B (2016) Smart clothing: connecting human with clouds and big data for sustainable health monitoring. ACM/Springer Mobile Networks and Applications. doi: 10.1007/s11036-016-0745-1
  10. 10.
    Fang Q, Sang J, Xu C, Shamim Hossain M (2015) Relational user attribute inference in social media. IEEE Trans. Multimed 17:7Google Scholar
  11. 11.
    Fortino G, Fatta G D, Pathan M et al (2014) Cloud-assisted body area networks: state-of-the-art and future challenges. Wireless Netw 20(7):1925–1938CrossRefGoogle Scholar
  12. 12.
    Fortino G, Galzarano S, Gravina R et al (2015) A framework for collaborative computing and multi-sensor data fusion in body sensor networks. Inf Fusion 22:50–70CrossRefGoogle Scholar
  13. 13.
    Gravina R, Fortino G (2016) Automatic methods for the detection of accelerative cardiac defense response. In: IEEE Trans Affect ComputGoogle Scholar
  14. 14.
    Han M-J, Lin C-H, Song K-T (2013) Robotic emotional expression generation based on mood transition and personality model. IEEE Trans Cybern 43(4):1290–1303CrossRefGoogle Scholar
  15. 15.
    He J, Wen Y, Huang J et al (2014) On the CostCQoE tradeoff for cloud-based video streaming under Amazon EC2’s pricing models. IEEE Trans Circ Syst Video Technol 24(4):669–680CrossRefGoogle Scholar
  16. 16.
    Hou X, Li Y, Chen M, Wu D, Jin D, Chen S (2016) Vehicular fog computing: a viewpoint of vehicles as the infrastructures. IEEE Trans Veh TechnolGoogle Scholar
  17. 17.
    Koelstra S, Patras I (2013) Fusion of facial expressions and EEG for implicit affective tagging. Image Vis Comput 31(2):164–174CrossRefGoogle Scholar
  18. 18.
    Lahat D, Adali T, Jutten C (2015) Multimodal data fusion: an overview of methods, challenges, and prospects. Proc IEEE 103(9):1449–1477CrossRefGoogle Scholar
  19. 19.
    Li Y, Qian M, Jin D, Hui P, Wang Z, Chen S (2014) Multiple mobile data offloading through disruption tolerant networks. IEEE Trans Mobile Comput 13 (7):1579–1596CrossRefGoogle Scholar
  20. 20.
    Li Y, Wu T, Hui P, Jin D, Chen S (2014) Social-aware d2d communications: qualitative insights and quantitative analysis. IEEE Commun Mag 52(6):150–158CrossRefGoogle Scholar
  21. 21.
    Li Y, Chen M (2015) Software-defined network function virtualization: a survey. IEEE Access 3:2542–2553CrossRefGoogle Scholar
  22. 22.
    Li Y, Zheng F, Chen M, Jin D (2015) A unified control and optimization framework for dynamical service chaining in software-defined nfv system. IEEE Wireless Commun 22(6):15–23CrossRefGoogle Scholar
  23. 23.
    Li Y, Jin D, Hui P, Han Z (2016) Optimal base station scheduling for device-to-device communication underlaying cellular networks. IEEE J Select Areas Commun 34(1):27–40CrossRefGoogle Scholar
  24. 24.
    Nardelli M, Valenza G, Greco A, Lanata A, Scilingo E (2015) Recognizing emotions induced by affective sounds through heart rate variability. IEEE Trans Affect ComputGoogle Scholar
  25. 25.
    Saadatian E, Salafi T, Samani H, Lim Y D, Nakatsu R (2014) An affective telepresence system using smartphone high level sensing and intelligent behavior generation. In: Proceedings of the second international conference on Human-agent interaction. ACM, pp 75–82Google Scholar
  26. 26.
    Shamim Hossain M, Muhammad G (2015) Audio-visual emotion recognition using multi-directional regression and Ridgelet transform. Springer J. Multimodal User InterfacesGoogle Scholar
  27. 27.
    Shamim Hossain M, Muhammad G, Al Hamid M F, Song B (2016) Audio-visual emotion recognition using big data towards 5G. Springer Mobile Networks and Applications (Springer MONE)Google Scholar
  28. 28.
    Shamim Hossain M, Muhammad G, Song B, Hassan M M, Alelaiwi A, Almari A (2015) Audio-visual emotion-aware cloud gaming framework. IEEE Trans Circuits Syst Video Technol 25(12):2105–2118CrossRefGoogle Scholar
  29. 29.
    Soleymani M, Asghari Esfeden S, Fu Y, Pantic M (2015) Analysis of eeg signals and facial expressions for continuous emotion detection. IEEE Trans Affect ComputGoogle Scholar
  30. 30.
    Taleb T (2014) Towards carrier cloud: potential, challenges, & solutions. IEEE Wireless Commun Mag 21(3):80–91CrossRefGoogle Scholar
  31. 31.
    Taleb T, Ksentini A, Chen M, Jantti R (2016) Coping with emerging mobile social media applications through dynamic service function chaining. IEEE Trans Wireless Commun 15(4):2859–2871CrossRefGoogle Scholar
  32. 32.
    Taleb T, Ksentini A, Sericola B (2016) On service resilience in cloud-native 5G mobile systems. IEEE J Select Areas Commun 34(3):483–496CrossRefGoogle Scholar
  33. 33.
    Wang H, Xu F, Li Y, Zhang P, Jin D (2015) Understanding mobile traffic patterns of large scale cellular towers in urban environment. In: Proceedings of the 2015 ACM conference on internet measurement conference. ACM, pp 225–238Google Scholar
  34. 34.
    Wu D, Huang J, He J et al (2015) Toward cost-effective mobile video streaming via smart cache with adaptive thresholding. IEEE Trans Broadcast 61(4):639–650CrossRefGoogle Scholar
  35. 35.
    Wu D, Xue Z, He J (2014) iCloudAccess: cost-effective streaming of video games from the cloud with low latency. IEEE Trans Circ Syst Video Technol 24(8):1405–1416CrossRefGoogle Scholar
  36. 36.
    Zhang J, Ge X, Li Z et al (2013) Analysis of the uplink maximum achievable rate with location-dependent intercell signal interference factors based on linear wyner model. IEEE Trans Veh Technol 62(9):4615–4628CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Min Chen S, Mao L Hu V, Leung C A P (2014) Crowd activity prediction based on big data analysis. IEEE Netw 28(4):52–57CrossRefGoogle Scholar
  38. 38.
    Zhang J, Xin Y, Han T et al (2014) On inter-cell interference factor in the uplinks of multicell planar networks. IEEE Int Conf Commun:4669–4673Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ping Zhou
    • 1
  • Yixue Hao
    • 1
  • Jun Yang
    • 1
  • Wei Li
    • 1
  • Lu Wang
    • 1
  • Yiming Miao
    • 1
  • Jeungeun Song
    • 1
  1. 1.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations