Skip to main content
Log in

GEO matching regions: multiple regions of interests using content based image retrieval based on relative locations

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Information retrieval systems are getting more attention in the era of multimedia technologies such as an image, video, audio and text files. The large numbers of images are challenges in computer systems field to store, manage data effectively and efficiently. The shape retrieval feature of different objects in the image also remains a difficult problem due to distinct angle view of different objects in a scene only; few studies have reported solution to the problem of finding relative locations of ROIs. In this paper, we proposed three methods such as1. Geolocation-based image retrieval (GLBIR), 2.Unsupervised feature technique Principal component analysis (PCA) and 3.multiple region-based image retrieval. The first proposed (GLBIR) method identifies geo location an image using visual attention based mechanism and its color layout descriptors. These features are extracted from geo-location of query image from Flickr database. Our proposed model does not fully semantic understanding of image content, uses visual metrics for example; the proximity ,color contrast, size and nearness to image’s boundaries to locate viewer’s attention. We analyzed results and compared with state of art CBIR Systems and GLBIR Technique. Our second method to refine images exploiting and fusing by unsupervised feature technique using principal component analysis (PCA). The visually similar images clustering together with analyses image retrieval process and remove outliers initially retrieved image set by PCA. To evaluation our proposed approach, we used thousands of images downloaded from Flickr and CIFAR-10 databases using Flickr public API. Finally, we determinately proposed a system for image retrieval based on region. It provides a user interface for availing to designate the watershed ROI within an input image. During the retrieval of images, regions’ feature vectors having codes of region homogeneous to a region of input image are utilized for comparison. Standard datasets are used for evaluation of proposed approach. The experiment demonstrates and effectiveness of the proposed method to achieve higher annotation performance increases accuracy and reduces image retrieval time. We evaluated our proposed approach on images dataset from Flickr and CIFAR-10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Agarwal M, Maheshwari RP (2012) Átrous gradient structure descriptor for content based image retrieval. Int J Multimed Inf Retr 1(2):129–138

    Article  Google Scholar 

  2. Agarwal S., N. Snavely, I. Simon, S. Seitz, and R. Szeliski (2009) Building rome in a day. In: 2009 I.E. 12th International Conference on Computer Vision, pp 72–79

  3. Arampatzis A, Zagoris K, Chatzichristofis SA (2013) Dynamic two-stage image retrieval from largemultimedia databases. Inf Process Manag 49(1):274–285

    Article  Google Scholar 

  4. Ardeshir S, AR Zamir, A Torroella, M Shah (2014) GIS-assisted object detection and geospatial localization. Computer Vision – ECCV 2014 Volume 8694 of the series Lecture Notes in Computer Science, pp 602–617

  5. Ardizzoni S., I. Bartolini, M. Patella (1999) Windsurf: region-based image retrieval using wavelets. Proceedings, Tenth International Workshop on Database and Expert Systems Applications, pp 167–173. doi:10.1109/DEXA.1999.795161

  6. Avrithis, Y., Y. Kalantidis, G. Tolias, and E. Spyrou (2010) Retrieving landmark and non-landmark images fromcommunity photo collections. In: Proceedings of the international conference on Multimedia, MM ’10. ACM, New York, pp 153–162

  7. Blincoe K, G Valetto, S Goggins (2012) Proximity: a measure to quantify the need for developers’ coordination. CSCW ‘12 Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work, pp 1351–1360. doi:10.1145/2145204.2145406

  8. Boujelbane, I., Said, S.H., Zaharia, T (2014) Multi-object recognition and tracking with feature points matching and spatial layout consistency. IEEE 978-1-4-6165-8/14, pp 355–359

  9. Bulatov, Y., Jambawalikar, S., Kumar, P., & Sethia, S. (2004) Hand recognition using geometric classifiers. In Biometric Authentication. Springer, Berlin Heidelberg, pp 753–759

  10. Burt PJ, Adelson EH (1983) The Laplacian pyramid as a compact image code. IEEE Trans on Communications COM-31(4):532–540

    Article  Google Scholar 

  11. Choras, R., S (2007). Image Feature Extraction Techniques and Their Applications for CBIR and Biometrics Systems”, International Journal of Biology and Biomedical Engineering 1(1):6–16

  12. Chum O., J. Philbin, J. Sivic, M. Isard, and A. Zisserman (2007) Total recall: automatic query expansion with a generative feature model for object retrieval. In: IEEE 11th International Conference on Computer’s Vision. ICCV 2007, pp 1–8

  13. Cusano C, Ciocca G, Schettini R (2004) Image annotation using SVM. Proceedings of SPIE 2004, pp 330–338

  14. de Santos-Sierra, D., Arriaga-Gomez, M. F., Bailador, G., & Sanchez-Avila, C. (2014) Low computational cost multilayer graph-based segmentation algorithms for hand recognition on mobile phones. In IEEE 2014 International Carnahan Conference on Security Technology (ICCST), pp 1–5

  15. des Jardins Marie, Eric Eaton, Kiri L. Wagstaff (2006) Learning user preferences for sets of objects. Proceeding ICML ‘06 Proceedings of the 23rd international conference on Machine learning. ACM, New York, pp 273–280

  16. Ding L, Gonzalez-Longatt FM, Wall P, Terzija V (2013) Two-step spectral clustering controlled islanding algorithm. IEEE Transactions on Power Systems 28(1):75–84

    Article  Google Scholar 

  17. Doublet, J., Lepetit, O., & Revenu, M. (2006) Contact less hand recognition using shape and texture features. In: IEEE 2006 8th International Conference on Signal Processing, vol. 3

  18. Draisma Jan, Emil Horobeţ, Giorgio Ottaviani, Bernd Sturmfels, Rekha Thomas (2014) The euclidean distance degree. SNC ‘14: Proceedings of the 2014 Symposium on Symbolic-Numeric Computation

  19. Evans K, Treisman A (2005) Perception of Objects in Natural Scenes: Is It Really Attention Free. J Experimental Psychology: Human Perception Performance 31(6):1476–1492

    Google Scholar 

  20. Felzenszwalb PF, Girshick RB, McAllester DA, Ramanan D (2010) Object detection with discriminatively trained part-based models. PAMI 32(9):1627–1645

    Article  Google Scholar 

  21. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  22. Flickner M, Sawhney H, Niblack W (1995) Query by image and video content: the QBIC system. IEEE Computer 28(9):23–32

    Article  Google Scholar 

  23. Gangopadhyay, A., Chatterjee, O., & Chatterjee, A. (2013) Hand shape based biometric authentication system using radon transform and collaborative representation based classification. In 2013 I.E. Second International Conference on Image Information Processing (ICIIP), pp 635–639

  24. Gosselin P, Cord M (2008) Active learning methods for interactive image retrieval. IEEE Trans Image Process 17(7):1200–1211

    Article  MathSciNet  Google Scholar 

  25. Guo Xuan, Rui Li, Cecilia Alm, Qi Yu, Jeff Pelz, Pengcheng Shi, Anne Haake, (2014) Infusing perceptual expertise and domain knowledge into a human-centered image retrieval system: a prototype application. ETRA ‘14: Proceedings of the Symposium on Eye Tracking Research and Applications

  26. Haung, D., Hu, J., Yuan, Y (2006) Primary-color-based spatial layout features and new image matching algorithm based on dual features. ICAT LNCS 4282, pp 494–501

  27. Hays James and Alexei A. Efros (2008) IM2GPS: estimating geographic information from a single image. IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008. doi:10.1109/CVPR.2008.4587784

  28. http://www.cs.toronto.edu/*kriz/cifar.html

  29. Islam MM, D Zhang, G Lu (2009) Rotation invariant curvelet features for texture image retrieval. IEEE International Conference on Multimedia and Expo. pp 562–565. doi:10.1109/ICME.2009.5202558

  30. Jian M, Lam KM (2014) Face-image retrieval based on singular values and potential-field representation. Signal Process 100:9–15

    Article  Google Scholar 

  31. Jian M, Dong Y, Ma J (2011) Image retrieval using wavelet-based salient regions. Imaging Sci J 59(4):219–231

    Article  Google Scholar 

  32. Joseph S, Balakrishnan K (2011) Multi-query content based image retrieval system using local binary patterns, international. Journal of Computer Applications 17(7):1–5

    Article  Google Scholar 

  33. Kaftan Jens, Andre Bell, Til Aach (2008) Mean shift segmentation - evaluation of optimization techniques. International Conference on Computer Vision Theory and Applications, pp 365–374

  34. Kasutani, E., Yamada, A. (2001). The MPEG-7 color layout descriptor: a compact image feature description for high-speed image/videosegment retrieval. In: Proceedings of International Conference on Image Processing, vol. 1, pp 674–677

  35. Khan F., R. Muhammad (2012) Color attributes for object detection. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp 3306–3313

  36. Khurana K, Awasthi R (2013) Techniques for Object Recognition in Images and Multi-Object Detection”. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) 2(4):1383–1388

    Google Scholar 

  37. Kumar A, Zhang D (2006) Personal recognition using hand shape and texture. Image Processing, IEEE Transactions on 15(8):2454–2461

    Article  Google Scholar 

  38. Kumar, A., Wong, D. C., Shen, H. C., & Jain, A. K. (2003) Personal verification using palmprint and hand geometry biometric. In: Audio-and Video-Based Biometric Person Authentication. Springer, Berlin Heidelberg, pp 668–678

  39. Lee T, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Optical Soc Am A 20(7):1434–1448

    Article  Google Scholar 

  40. Liu, Y., Zhang, D., Lu, G., Ma, W.Y. (2007) A survey of content based image retrieval with high level semantics. Pattern Recognition Society Published by Elsevier, pp 262–282

  41. Liu Dingding, Kari Pulli, Linda G. Shapiro, Yingen Xiong (2010) Fast interactive image segmentation by discriminative clustering. ACM Multimedia Workshop on Mobile Cloud Media Computing, pp 47–52

  42. Majid, A., Chen, L., Chen, G., Mirza, H. T., & Hussain, I. (2012) GoThere: travel suggestions using geotagged photos. In: WWW2012 companion, April 16–20, 2012. ACM, Lyon. 978-1-4503-1230-1/12/04

  43. Manjunath BS, Ohm J-R, Vasudevan VV, Yamada A (2001) Color and texture descriptors. IEEE Trans Circuits Syst Video Technol 11(6):703–715

    Article  Google Scholar 

  44. M Marin-Jimenez and NP de la Blanca (2006) Empirical study of multi-scale filter banks for object categorization. Proc. Int’l Conf. Pattern Recognition

  45. Memon I (2015) Authentication users privacy: an integrating location privacy protection algorithm for secure moving objects in location based services. Wirel Pers Commun 82(3):1585–1600

    Article  Google Scholar 

  46. Memon MH, Li J-P, Memon I, Khan A, Shaikh RA, Deep S (2014a) Content based image retrieval based on geo-location driven image tagging on the social web. 11th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2014, pp 280–283

  47. Memon MH, Li J-P, Memon I, Ahmed R, Shaikh AK, Deep S (2014b) Unsupervised feature approach for content based image retrieval using principal component analysis. 11th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2014, pp 271–275

  48. Memon I, Chen L, Majid A, Lv M, Hussain I, Chen G (2015a) Travel Recommendation Using Geo-tagged Photos in Social Media for Tourist. Wirel Pers Commun 80:1347–1362

    Article  Google Scholar 

  49. Memon MH, Li J-P, Memon I, Shaikh RA, Mangi FA (2015b) Efficient object identification and multiple regions of interest using CBIR based on relative locations and matching regions.12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), pp 247–250. doi:10.1109/ICCWAMTIP.2015.7493985

  50. Meng L, Tan A-H, Leung C, Nie L, Chua T-S, Miao C (2015) Online multimodal co-indexing and retrieval of weakly labeled web image collections. Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pp 219–226

  51. Murala S, Maheshwari RP, Balasubramanian R (2012) Directional local Extrema patterns: a new descriptor for content based image retrieval. Int J Multimed Inf Retr 1(3):191–203

    Article  Google Scholar 

  52. Mutch J. and D. Lowe (2006) Multiclass object recognition using sparse, localized features. Proc. IEEE Conf. Computer Vision and Pattern Recognition

  53. Muwei J, Kin-Man L, Junyu D, Linlin S (2015) Visual-patch-attention-aware saliency detection. IEEE Trans Cybern 45(8):1575–1586. doi:10.1109/TCYB.2014.2356200

    Article  Google Scholar 

  54. Nie L, Wang M, Zha Z-J, Chua T-S (2012a) Oracle in image search: a content-based approach to performance prediction. ACM Trans Inf Syst 30(2):Article 13

    Article  Google Scholar 

  55. Nie L, Yan S, Wang M, Hong R, Chua T-S (2012b) Harvesting visual concepts for image search with complex queries. MM’12, October 29–November 2, 2012, Nara, Japan

  56. Oden C, Ercil A, Buke B (2003) Combining implicit polynomials and geometric features for hand recognition. Pattern Recogn Lett 24(13):2145–2152

    Article  Google Scholar 

  57. Oji R (2012) An automatic algorithm for object recognition and detection based on ASIFT keypoints. Signal and Image Processing: An International Journal (SIPIJ) 3(5):29–39

    Google Scholar 

  58. Pedronette DCG, Penatti OAB, Calumby RT, Torres RS (2014) Unsupervised distance learning by reciprocal kNN distance for image retrieval. In: ICMR '14 Proceedings of International Conference on Multimedia Retrieval, New York, 2014. doi:10.1145/2578726.2578770

  59. Privitera CM, Stark LW (2000) Algorithms for defining visual regions-of-interest: comparison with eye fixations. IEEE Trans on Pattern Analysis and Machine Intelligence 22(9):970–982

    Article  Google Scholar 

  60. Ramadevi Y, Sridevei T, Poornima B, Kalyani B (2010) Segmentation and Object Recognition Using Edge Detection Techniques. International Journal of Computer Science & Information Technology (IJCSIT) 2(6):153–161

    Article  Google Scholar 

  61. Rautmare S, Bhalchandra A (2014) Visual perception oriented cbir envisaged through fractals and presence score. ICGST - GVIP Journal, ISSN 1687-398X, volume 14, issue 2, Delaware, USA, pp 27–36

  62. Rowe R K, Uludag U, Demirkus M, Parthasaradhi S, Jain AK (2007) A multispectral whole-hand biometric authentication system. In 2007 I.E. Biometrics Symposium, pp 1–6

  63. Saadatmand-Tarzjan M, Moghaddam HA (2007) Anovel evolutionary approach for optimizing content-based image indexing algorithms. IEEE Trans Syst Man Cybern Part B Cybern 37(1):139–153

    Article  Google Scholar 

  64. Saha SK, Das AK, Chanda B (2004) CBIR using perception based texture and colour measures. IEEE 0-7695-2128-2/04, pp 1–4

  65. Sato Y D, Jitsev J, Malsburg C (2008) A visual object recognition system invariant to scale and rotation. Proceedings of the 18th international conference on Artificial Neural Networks, Part I, Springer-Verlag, pp 991–1000

  66. Seber GAF (1984) Multivariate observations. Wiley, New York

    Book  MATH  Google Scholar 

  67. Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T (2007) Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell 29(3):411–426

    Article  Google Scholar 

  68. Shaikh RA, Li J-P, Khan A, Deep S, Memon I, Kumar K (2014) Contemporary integration of content based image retrieval. 11th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2014, pp 301–304

  69. Shimazaki H, Shinomoto S (2007) A method for selecting the bin size of atime histogram. Neural Comput 19:1503–1527

    Article  MathSciNet  MATH  Google Scholar 

  70. Siagian C, Itti L (2007) Rapid biologically-inspired scene classification using features shared withvisual attention. IEEE Trans On Pattern Analysis and Machine Intelligence 29(2):300–312

    Article  Google Scholar 

  71. Siagian C, Itti L (2013) Biologically inspired mobile robot vision localization. IEEE Trans Robot 25(4)861–873. doi:10.1109/TRO.2009.2022424

  72. Siddiquie B, White B, Sharma A, Davis LS (2014) Multi-modal image retrieval for complex queries using small codes. ICMR ‘14: Proceedings of International Conference on Multimedia Retrieval

  73. Song D, Tao D (2010) Biologically inspired feature manifold for scene classification. IEEE Trans Image Process 19(1)

  74. Starck J-L, Candès EJ, Donoho DL (2002) The curvelet transform for image denoising. IEEE Trans Image Process 11(6):670–684

    Article  MathSciNet  MATH  Google Scholar 

  75. Sumana I, Islam M, Zhang DS, Lu G (2008) Content based image retrieval using curvelet transform. In: Proceedings of IEEE International Workshop on Multimedia Signal processing (MMSP08), Cairns. Queensland, Australia, pp 11–16

  76. Sun Q, Xiang S, Ye J, Robust (2013) Principal component analysis via capped norms. KDD ‘13: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining

  77. Thepade S, Das R, Ghosh S, (2014) Feature extraction with ordered mean values for content based image classification. Hindawi Publication Corporation, Advances in Computer Engineering, pp 1–15

  78. Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522

    Article  Google Scholar 

  79. Tsai C-Y, Alexander ML, Okwara N, Kender JR, (2014) Highly efficient multimedia event recounting from user semantic preferences. ICMR ‘14: Proceedings of International Conference on Multimedia Retrieval

  80. van de K. Sande, Uijlings JRR, Gevers T, Smeulders AWM (2011) Segmentation as selective search for object recognition. In ICCV

  81. Vu K, Hua KA, Tavanapong W (2003) Image retrieval based on regions of interest. IEEE Trans Knowl Data Eng 15(4):1045–1049

    Article  Google Scholar 

  82. Wagstaff KL, desJardins M, Eaton E (2010) Modeling and Learning User Preferences Over Sets. Journal of Experimental & Theoretical Artificial Intelligence 22(3):237–268

    Article  MATH  Google Scholar 

  83. Wang D, Terman D (1995) Locally excitatory globally inhibitory oscillator networks. IEEE Transactions on Neural Networks 6(1):283–286

    Article  Google Scholar 

  84. Wang X, Wang Z (2013) A novel method for image retrieval based on structure elements descriptor. J Vis Commun Image Represent 24:63–74

    Article  Google Scholar 

  85. Wang JZ, Li J, Wiederhold G (2001) SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23(9):947–963

    Article  Google Scholar 

  86. Wang HH, Mohamad D, Ismail NA (2004) Semantic gap in CBIR: automatic object spatial relationships semantic extraction and representation. International Journal of Image Processing 4(3):192–2004

    Google Scholar 

  87. Wang X-Y, Yu Y-J, Yang H-Y (2011) An effective image retrieval scheme using color, texture & shape features. Computer Standards and Interfaces 33(1):59–68

    Article  Google Scholar 

  88. Wang H, Zhai CX, Liang F, Dong A, Chang Y (2014a) User modeling in search logs via a nonparametric bayesian approach. WSDM ‘14: Proceedings of the 7th ACM international conference on Web search and data mining, pp 203–212

  89. Wang H, Zhai CX, Liang F, Dong A, Chang Yi (2014b) User modeling in search logs via a nonparametric Bayesian approach. WSDM ‘14: Proceedings of the 7th ACM international conference on Web search and data mining

  90. Wardhani A, Thomson T (2004) Content based image retrieval using category-based indexing. IEEE International Conference on Multimedia and Expo (ICME), pp 783–786

  91. Wong KM, Cheung K-W, Po LM, MIRROR (2005) An interactive content based image retrieval system. IEEE International Symposium on Circuits and Systems, pp 1541–1544

  92. Yang C, Dong M, Hua J (2006) Region-based image annotation using asymmetrical support vector machine-based multiple-instance learning. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 2057–2063

  93. Yeh C-H, Barsky BA, Ouhyoung M (2014) Personalized photograph ranking and selection system considering positive and negative user feedback. ACM Trans Multimed Comput Commun Appl 10(4). doi:10.1145/2584105

  94. Yu Z, Wongc H-S, You J, Han G (2012) Visual query processing for efficient image retrieval using a SOM-based filter-refinement scheme. Inf Sci 203:83–101

    Article  Google Scholar 

  95. Zhang J-D, Chow C-Y (2013) iGSLR: Personalized Geo-Social Location Recommendation - A Kernel Density Estimation Approach. SIGSPATIAL’13, November 05–08 2013, Orlando, FL, USA. doi: 10.1145/2525314.2525339

  96. Zhang P, Wang RS (2004) Detecting salient regions based on location shift and extent trace. Journal of Software 15(6):891–898

    MATH  Google Scholar 

  97. Zhang J, Yoo C-W, Ha S-W (2007) ROI based natural image retrieval using color and texture feature. Fuzzy Systems and Knowledge Discovery 4(740–744)

  98. Zhang D, Islam MM, Lu G, et al. (2012) Int J Comput Vis 98:187. doi:10.1007/s11263-011-0503-6

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper was supported by the National Natural Science Foundation of China (Grant No.61370073), the National High Technology Research and Development Program of China (Grant No.2007AA01Z423), Sichuan Province Science and technology support program (2013GZX0165), Sichuan Province Science and technology support program (2013GZ0119), Sichuan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Memon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memon, M.H., Li, JP., Memon, I. et al. GEO matching regions: multiple regions of interests using content based image retrieval based on relative locations. Multimed Tools Appl 76, 15377–15411 (2017). https://doi.org/10.1007/s11042-016-3834-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3834-z

Keywords

Navigation