Ahonen T, Hadid A, Pietikinen M (2004) Face recognition with local binary patterns. In: Pajdla T, Matas J (eds) European conference on computer vision, lecture notes in computer science. doi:10.1007/978-3-540-24670-1_36, vol 3021. Springer, Berlin Heidelberg, pp 469–481
Ahonen T, Hadid A, Pietikäinen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28:2037–2041. doi:10.1109/TPAMI.2006.244
Article
MATH
Google Scholar
Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720. doi:10.1109/34.598228
Article
Google Scholar
Belhumeur P N, Jacobs D W, Kriegman D J, Kumar N (2013) Localizing parts of faces using a consensus of exemplars. In: IEEE transactions on pattern analysis and machine intelligence, vol 35, pp 2930– 2940
Bergstra J, Yamins D, Cox D (2013) Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: International conference on machine learning. http://jmlr.org/proceedings/papers/v28/bergstra13.html, pp 115–123
Bradski G (2000) The OpenCV library. Dr Dobb’s Journal of Software Tools
Chiachia G, Falcão AX, Pinto N, Rocha A, Cox D (2014) Learning person-specific representations from faces in the wild. IEEE Trans Inf Forensics Secur 9(12):2089–2099. doi:10.1109/TIFS.2014.2359543. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6905816&tag=1
Cox D, Pinto N (2011) Beyond simple features: a large-scale feature search approach to unconstrained face recognition. In: IEEE International conference on automatic face and gesture recognition and workshops. doi:10.1109/FG.2011.5771385, pp 8–15
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE conference on computer vision and pattern recognition. doi:10.1109/CVPR.2005.177, vol 1, pp 886–893
Diamond R, Carey S (1986) Why faces are and are not special: an effect of expertise. J Exp Psychol Gen 115(2):107–117
Article
Google Scholar
Felzenszwalb P, Girshick R, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645. doi:10.1109/TPAMI.2009.167
Article
Google Scholar
Fisher R A (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7(2):179–188. doi:10.1111/j.1469-1809.1936.tb02137.x
Article
Google Scholar
Hinton G E, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R R (2012) Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580
Krizhevsky A, Sutskever I, Hinton G E (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst:1–9
Liu J, Kanazawa A, Jacobs D, Belhumeur P (2012) Dog breed classification using part localization. In: European conference on computer vision. Springer, pp 172–185
Lowe D (1999) Object recognition from local scale-invariant features. In: International conference on computer vision. doi:10.1109/ICCV.1999.790410, vol 2, pp 1150–1157
Parkhi OM, Vedaldi A, Zisserman A, Jawahar C (2012) Cats and dogs. In: IEEE conference on computer vision and pattern recognition, pp 3498–3505
Pinto N, Stone Z, Zickler T, Cox D (2011) Scaling up biologically-inspired computer vision: a case study in unconstrained face recognition on facebook. In: IEEE computer society conference on computer vision and pattern recognition workshops. doi:10.1109/CVPRW.2011.5981788, pp 35–42
Scapinello K, Yarmey A (1970) The role of familiarity and orientation in immediate and delayed recognition of pictorial stimuli. Psychon Sci 21(6):329–330. doi:10.3758/BF03335807
Article
Google Scholar
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2014) Overfeat: integrated recognition, localization and detection using convolutional networks. In: International conference on learning representations, CBLS. http://openreview.net/document/d332e77d-459a-4af8-b3ed-55ba
Sirovich L, Kirby M (1987) Low-dimensional procedure for the characterization of human faces. J Opt Soc Am A 4(3):519–524. doi:10.1364/JOSAA.4.000519. http://josaa.osa.org/abstract.cfm?URI=josaa-4-3-519
Article
Google Scholar
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition
Turk M, Pentland A (1991) Face recognition using eigenfaces. In: IEEE conference on computer vision and pattern recognition. doi:10.1109/CVPR.1991.139758, pp 586–591
Wang X, Ly V, Sorensen S, Kambhamettu C (2014) Dog breed classification via landmarks. In: IEEE international conference on image processing, IEEE, pp 5237–5241
Wiskott L, Fellous J M, Krüger N, Von Malsburg C D (1997) Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell 19:775–779. doi:10.1109/34.598235
Article
Google Scholar
Xu Y, Zhang D, Yang J, Yang J Y (2011) A two-phase test sample sparse representation method for use with face recognition. Circuits and Systems for Video Technology 21(9):1255–1262. doi:10.1109/TCSVT.2011.2138790
MathSciNet
Article
Google Scholar