Skip to main content
Log in

A system for efficient motor learning using multimodal augmented feedback

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Numerous studies have established that using various forms of augmented feedback improves human motor learning. In this paper, we present a system that enables real-time analysis of motion patterns and provides users with objective information on their performance of an executed set of motions. This information can be used to identify individual segments of improper motion early in the learning process, thus preventing improperly learned motion patterns that can be difficult to correct once fully learned. The primary purpose of the proposed system is to serve as a general tool in the research on impact of different feedback modalities on the process of motor learning, for example, in sports or rehabilitation. The key advantages of the system are high-speed and high-accuracy tracking, as well as its flexibility, as it supports various types of feedback (auditory and visual, concurrent or terminal). The practical application of the proposed system is demonstrated through the example of learning a golf swing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arvind, D. K., & Bates, A. (2008, March). The speckled golfer. InProceedings of the ICST 3rd international conference on Body area networks (p. 28). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering)

  2. Baudry L, Leroy D, Thouvarecq R, Chollet D (2006) Auditory concurrent feedback benefits on the circle performed in gymnastics. J Sports Sci 24(2):149–156

    Article  Google Scholar 

  3. Chollet, D., Micallef, J. P., & Rabischong, P. (1988). Biomechanical signals for external biofeedback to improve swimming techniques. Swimming Science V. Champaign, IL: Human Kinetics Books, 389–396

  4. Chollet, D., Madani, M., & Micallef, J. P. (1992). Effects of two types of biomechanical bio-feedback on crawl performance. Biomechanics and Medicine in Swimming, Swimming Science VI, 48–53

  5. Clarkson PM, James R, Watkins A, Foley P (1986) The effect of augmented feedback on foot pronation during Barre exercise in dance. Res Q Exerc Sport 57(1):33–40

    Article  Google Scholar 

  6. Crowell HP, Davis IS (2011) Gait retraining to reduce lower extremity loading in runners. Clin Biomech 26(1):78–83

    Article  Google Scholar 

  7. Dozza M, Horak FB, Chiari L (2007) Auditory biofeedback substitutes for loss of sensory information in maintaining stance. Exp Brain Res 178(1):37–48

    Article  Google Scholar 

  8. Effenberg AO (2000) Zum Potential komplexer akustischer Bewegungsinformationen für die Technikansteuerung. Leistungssport 5:19–25

    Google Scholar 

  9. Femery VG, Moretto PG, Hespel JMG, Thévenon A, Lensel G (2004) A real-time plantar pressure feedback device for foot unloading. Arch Phys Med Rehabil 85(10):1724–1728

    Article  Google Scholar 

  10. Godbout, A., & Boyd, J. E. (2010, June). Corrective sonic feedback for speed skating: a case study. In Proceedings of the 16th international conference on auditory display (pp. 23–30)

  11. Holden MK, Dyar T (2002) Virtual environment training: a new tool for neurorehabilitation. J Neurol Phys Ther 26(2):62–71

    Google Scholar 

  12. Jakus, G., Tomažič, S., Sodnik, J. (2015). Sistem za podporo učenju gibalnih vzorcev z uporabo večmodalne povratne informacije v realnem času. In Proceedings of the 24th International Electrotechnical and Computer Science Conference, 103–106

  13. Kirby R (2009) Development of a real-time performance measurement and feedback system for alpine skiers. Sports Technology 2(1–2):43–52

    Google Scholar 

  14. Kleiman-Weiner, M., & Berger, J. (2006). The sound of one arm swinging: a model for multidimensional auditory display of physical motion

  15. Koch, K., McLean, J., Segev, R., Freed, M. A., Berry, M. J., Balasubramanian, V., & Sterling, P. (2006). How much the eye tells the brain. Curr Biol, 16(14), 1428–1434

  16. Konttinen N, Mononen K, Viitasalo J, Mets T (2004) The effects of augmented auditory feedback on psychomotor skill learning in precision shooting. J Sport Exerc Psychol 26(2):306–316

    Article  Google Scholar 

  17. Koritnik, T., Bajd, T., & Munih, M. (2008). Virtual environment for lower-extremities training. Gait Posture, 27(2), 323–330

  18. Krašček, A. & Sodnik, J. (2014). Qualisys Web Tracker – A web-based visualization tool for real-time data of an optical tracking system. In Proceedings of ICIST 2014, 155–160

  19. Mullineaux DR, Underwood SM, Shapiro R, Hall JW (2012) Real-time biomechanical biofeedback effects on top-level rifle shooters. Appl Ergon 43(1):109–114

    Article  Google Scholar 

  20. Nilsson, L. (2011). QTM Real-time Server Protocol Documentation, V1.9

  21. Perrott, D. R., Sadralodabai, T., Saberi, K., & Strybel, T. Z. (1991). Aurally aided visual search in the central visual field: effects of visual load and visual enhancement of the target. Hum Factors , 33(4), 389–400

  22. Petrofsky J (2001) The use of electromyogram biofeedback to reduce Trendelenburg gait. Eur J Appl Physiol 85(5):491–495

    Article  Google Scholar 

  23. Qualysis Motion Capture Systems. (2015 September) Retrieved 6th , from: http://www.qualisys.com/

  24. Schmidt, R. A. (1991). Motor learning principles for physical therapy. Contemporary management of motor control problems: Proceedings of the II STEPConference: Alexandria, Va: American Physical Therapy Association, 49–63

  25. Schmidt, R. A., & Wrisberg, C. A. (2008). Motor learning and performance: A situation-based learning approach. Champaign, IL: Human Kinetics

  26. Shea CH, Wulf G (1999) Enhancing motor learning through external-focus instructions and feedback. Hum Mov Sci 18(4):553–571

    Article  Google Scholar 

  27. Sigrist R, Schellenberg J, Rauter G, Broggi S, Riener R, Wolf P (2011) Visual and auditory augmented concurrent feedback in a complex motor task. Presence: Teleop Virt Environ 20(1):15–32

    Article  Google Scholar 

  28. Sigrist R, Rauter G, Riener R, Wolf P (2013) Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychonomic bulletin & review 20(1):21–53

    Article  Google Scholar 

  29. Sigrist R, Rauter G, Marchal-Crespo L, Riener R, Wolf P (2015) Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning. Exp Brain Res 233(3):909–925

    Article  Google Scholar 

  30. Smith RM, Loschner C (2002) Biomechanics feedback for rowing. J Sports Sci 20(10):783–791

    Article  Google Scholar 

  31. Snodgrass SJ, Rivett DA, Robertson VJ, Stojanovski E (2010) Real-time feedback improves accuracy of manually applied forces during cervical spine mobilisation. Man Ther 15(1):19–25

    Article  Google Scholar 

  32. Takahata, M., Shiraki, K., Sakane, Y., & Takebayashi, Y. (2004, June). Sound feedback for powerful karate training. In Proceedings of the 2004 conference on New interfaces for musical expression (pp. 13–18). National University of Singapore

  33. Todorov E, Shadmehr R, Bizzi E (1997) Augmented feedback presented in a virtual environment accelerates learning of a difficult motor task. J Mot Behav 29(2):147–158

    Article  Google Scholar 

  34. Wulf G, Shea CH (2002) Principles derived from the study of simple skills do not generalize to complex skill learning. Psychon Bull Rev 9(2):185–211

    Article  Google Scholar 

  35. Wulf G, Hörger M, Shea CH (1999) Benefits of blocked over serial feedback on complex motor skill learning. J Mot Behav 31(1):95–103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grega Jakus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakus, G., Stojmenova, K., Tomažič, S. et al. A system for efficient motor learning using multimodal augmented feedback. Multimed Tools Appl 76, 20409–20421 (2017). https://doi.org/10.1007/s11042-016-3774-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3774-7

Keywords

Navigation