Skip to main content
Log in

Video traffic analytics for large scale surveillance

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The video traffic analysis is the most important issue for large scale surveillance. In the large scale surveillance system, huge amount of live digital video data is submitted to the storage servers through the number of externally connected scalable components. The system also contains huge amount of popular and unpopular old videos in the archived storage servers. The video data is delivered to the viewers, partly or completely on demand through a compact system. In real time, huge amount of video data is imported to the viewer’s node for various analysis purposes. The viewers use a number of interactive operations during the real time tracking suspect. The compact video on demand system is used in peer to peer mesh type hybrid architecture. The chunk of video objects move fast through the real time generated compact topological space. Video traffic analytics is required to transfer compressed multimedia data efficiently. In this work, we present a dynamically developed topological space, using mixed strategy by game approach to move the video traffic faster. The simulation results are well addressed in real life scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Annapureddy S et al. (2007) Explorng VoD in swarming system, IEEE INFOCOM 2007, p 2571–2575, doi: 10.1109/INFCOM.2007.323

  2. Asit D et al. (1994) Scheduling polices for an on demand video server with batching. Proc Multimed:15–23 doi:10.1145/192593.192614

  3. Atrey PK, Kankanhalli MS, Jain R (2006) A framework for information assimilation in multimedia surveillance systems. ACM Multimed Syst J

  4. Atrey PK, Kankanhalli MS, Saddik A E (2007) Confidence building among correlated streams in multimedia surveillance systems. MMM 2007, LNCS 4352, Part II, p 155–164

  5. Ayesta U et al (2012) Sojourn times in a processor sharingqueue with multiple vacations. Queueing Syst 71(1):53–78

    Article  MathSciNet  MATH  Google Scholar 

  6. Bird ND, Masoud O, Papanikolopoulos NP, Isaacs A (Jun. 2005) Detection of loitering individuals in public transportation areas. IEEE Trans Intell Transp Syst 6(2):167–177

  7. Bramberger M et al. (2014) Real-time video analysis on an embedded smart camera for traffic surveillance, 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04),p 174–181. doi:10.1109/rttas.2004.1317262

  8. Coifman B, Beymer D, McLauchlan P, Malik J (1998) Areal time computer vision system for vehicle tracking and traffic surveillance. Trans Res Part -C 6:271–288. Elsevier Science

  9. Collins R et al (2000) A system for video surveillance and monitoring, VSAM Final Report, Technical Report, CMURI-TR-00-12

  10. Dufaux F, Ebrahimi T (2006) Scrambling for video surveillance with privacy. Proc. IEEE Workshop on Privacy Research in Vision, New York, NY

  11. Hampapur A et al (2005) Smart video surveillance, exploring the concept of multiscale spatiotemporal tracking. IEEE Signal Process Mag 22(2):38–51. doi:10.1109/MSP.2005.1406476

    Article  Google Scholar 

  12. Heartwell CH et al (2002) Critical asset protection, perimeter monitoring, and threat detection using automated video surveillance –a technology overview with case studies, Proceedings. 36th Annual 2002 International Carnahan Conference on Security Technology. doi:10.1109/CCST.2002.1049231

  13. Jiang D et al (2014) How to reconstruct end –to-end traffic based on time-frequency analysis and artificial neural network. AEU - Int J Electron Commun 68(10):915–925

    Article  Google Scholar 

  14. Jiang D et al (2014) A transform domain­based anomaly detection approach to network ­wide traffic. J Netw Comput Appl 40:292–306

    Article  Google Scholar 

  15. Jiang D et al (2015) A novel hybrid prediction algorithm to network traffic. Ann Telecommun 70(9):427–439

    Article  Google Scholar 

  16. Junejo IN, Javed O, Shah M (2004) Multi feature path modeling for video surveillance. Int Conf Pattern Recogn:716–719

  17. Junejo IN, Javed O, Shah M (2004) Multi feature path modeling for video surveillance. In Int Conf Pattern Recog, Cambridge, England, UK, p 716–719

  18. Kanrar S (2011) Performance of distributed video on demand system for multirate traffic. Int Conf ReTIS 2011:52–56. doi:10.1109/ReTIS.2011.6146839

    Google Scholar 

  19. Kanrar S, Mandal NK (2014) Dynamic page replacement at the cache memory for the video on demand server. Adv Comput Netw Inform 2:461–469. doi:10.1007/978-3-319-07350-7_51

    Google Scholar 

  20. Kanrar S et al (2015) Text and language independent speaker identification by GMM based I vector. ICCCT‘15–ACM proceeding, p 95–100. doi:10.1145/2818567.2818585

  21. Kanrar S et al (2015) Detect mimicry by enhancing the speaker recognition system. Adv Intell Syst Comput 339:21–31. doi:10.1007/978-81-322-2250-7_3

    Google Scholar 

  22. Kanrar S (2015) Impact of threshold to identify vocal tract. Adv Intell Syst Comput 404:97–105. doi:10.1007/978-81-322-2695-6_9

    Google Scholar 

  23. Khoshabeh R, Gandhi T, Trivedi MM (2007) Multi camera based traffic flow characterization and classification. IEEEConf. Intell. Transport. Syst, p 259–264, Seattle,WA

  24. Kwak S, Byun H (2011) Detection of dominant flow and abnormal events in surveillance video. Opt Eng 50(2):027202

    Article  Google Scholar 

  25. Lee D et al (2001) LRFU: a spectrum of polices that subsumes the least recently used and least frequently used polices. IEEE Trans Comput 50(12):1352–1361

    Article  MathSciNet  Google Scholar 

  26. Li VOK, Liao W (2003) Interactive video-on-demand system, Patent US 6543053 B1, Publication

  27. Liao H.-Y.M, Chen D.-T, Su C.-W, Tyan H.-R (2006) Real-time event detection and its application to surveillance systems. IEEE Int Symp Circuits Syst:509–512

  28. Lu N et al. (2008) An improved motion detection method for real-time surveillance. Proc. of IAENG International Journal of Computer Science (1):1–16

  29. Makris D, Ellis T (2005) Learning semantic scene models from ob-serving activity in visual surveillance. IEEE Trans Syst Man Cy-bernB 35(3):397–408

    Article  Google Scholar 

  30. Morris BT, Trivedi MM (2008) Learning, modeling, and classification of vehicle track patterns from live video. IEEE Trans Intell Transp Syst 9(3):425–437

    Article  Google Scholar 

  31. Morris BT et al (2012) Real-time video-based traffic measurement and visualization system for energy/emissions. IEEE Trans Intell Transp Syst 13(4):1667–1678

    Article  MathSciNet  Google Scholar 

  32. Muller-Schneiders S, Jager T, Loos H, Niem W (2005) Performance evaluation of a real time video surveillance system. Proc. of 2nd Joint IEEE Int. Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (VS-PETS), p 137–144

  33. Nie L et al (2013) A compressive sensing-based reconstruction approach to network traffic. Comput Electr Eng 39(5):1422–1432

    Article  Google Scholar 

  34. Oner Sebe I et al. (2003) 3D Video surveillance with augmented virtual environments. ACM proceeding IWVS’03

  35. Remagnino P, Velastin SA, Foresti GL, Trivedi M (Aug. 2007) Novel concepts and challenges for the next generation of video surveillance systems. Mach Vis Appl 18(3–4):135–137

  36. Saleemi I, Shafique K, Shah M (2009) Probabilistic modeling of scene dynamics for applications in visual surveillance. IEEE Trans Pattern Anal Mach Intell 31(8):1472–1485. doi:10.1109/TPAMI.2008.175

    Article  Google Scholar 

  37. Saroj Kumar R (2010) New terror architecture in South Asia 26/11 Mumbai attacks inquiry. J Int Aff (India Quarterly) 66(4):359–381. doi:10.1177/097492841006600403

    Google Scholar 

  38. Saunier N, Sayed T, Lim C (2007) Probabilistic collision prediction for vision-based automated road safety analysis. IEEE Conf. Intell Transport Syst, Seattle, pp 872–878, Washington

  39. Shah M et al (2007) Automated surveillance in realistic scenarios. IEEE Multi Media 14(1):30–39. doi:10.1109/MMUL.2007.3

    Article  Google Scholar 

  40. Shiang H-P, van der Schaar M (2010) Information-constrained resource allocation in multicamera wireless surveillance networks. IEEE Trans Circ Syst Video Technol 20(4):505–517. doi:10.1109/TCSVT.2009.2035837

    Article  Google Scholar 

  41. Shrutivandana S, Demosthenis T (2009) Externalities-based decentralized optimal power allocation algorithm for wireless networks. IEEE/ACM Trans Netw 17(6):1819–1831. doi:10.1109/TNET.2009.2020162

    Article  Google Scholar 

  42. Soumen K et al. (2016) Enhancement of video streaming in distributed hybrid architecture. Adv Multimed 2016, Article ID 5429187: 14, doi:10.1155/2016/5429187

  43. Soumen K et al. (2016) Video traffic flow analysis in distributed system during interactive session. Adv Multimed 2016, Article ID 7829570:14, doi:10.1155/2016/7829570

  44. Suh K, Diot C, Kurose J, Massoulié L, Neumann C, Towsley D, Varvello M (2006) Push-to-peer video-on-demand system: design and evaluation. Technical Report CR-PRL-2006-11-0001, Thomson Research

  45. Suh K et al (2007) Push-to-peer video-on-demand system: design and evaluation. IEEE J Sel Areas Commun 25(9):1706–1716

    Article  Google Scholar 

  46. Tan B, Massoulie L (2013) Optimal content placement for peer-to-peer video-on-demand systems. Networking. IEEE/ACM Trans Networking 21(2):566–579. doi:10.1109/tnet.2012.2208199

    Article  Google Scholar 

  47. Turner-Fairbank-Highway Research Center (2013) Pedestrian and bicyclist intersection safety indices final report, http://www.fhwa.dot.gov/publications/research/safety/pedbike/06125/index.cfm

  48. Victor O, Li K et al (1996) Performance model of interactive video-on-demand systerns. IEEE J Sel Areas Commun 14(6):1099–1109

    Article  Google Scholar 

  49. Yoshitaka A, Sawada K (2012) Personalized video summarization based on behavior of viewers. In Eighth international conference on signal Image Technology and Internet Based Systems:1–7

  50. Yu H et al. (2006) Understanding user behavior in large scale video-on-demand systems. ACM proceeding Euro Sys, Leuven, Belgium 06

  51. Yunus D, Atay O, Cem E (2012) Distributed and Online Fair Resource Managment in Video Surveillance Sensor Networks. IEEE Trans Mob Comput 11(5):835–848. doi:10.1109/TMC.2011.115

    Article  Google Scholar 

  52. Zhang X, Liu J, Li B, Yum T (2005) Cool Streaming/DONet: a data driven overlay network for live media streaming. In Proc. IEEE 3:2102–2111. doi: 10.1109/INFCOM.2005.1498486

Download references

Acknowledgments

The authors are grateful to Sharmista Das Kanrar from Bishop Westcott, Ranchi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Kanrar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanrar, S., Mandal, N.K. Video traffic analytics for large scale surveillance. Multimed Tools Appl 76, 13315–13342 (2017). https://doi.org/10.1007/s11042-016-3752-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3752-0

Keywords

Navigation