Skip to main content
Log in

A data-driven editing framework for automatic 3D garment modeling

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Exploring shape variations on virtual garments is significant but challenging to the aspect of 3D garment modeling. In this paper, we propose a data-driven editing framework for automatic 3D garment modeling, which includes semantic garment segmentation, probabilistic reasoning for component suggestion, and garment component merging. The key idea in this work is to develop a simple but effective garment synthesis that utilizes a continuous style description, which can be characterized by the ratio of area and boundary length on garment components. First, a semi-supervised learning algorithm is proposed to simultaneously segment and label the components in 3D garments. Second, a set of matchable probability measurement is applied to recommend components that can be regarded as a new 3D garment. Third, a variation synthesis is developed to satisfy the garment style criteria while ensuring the realistic-looking plausibility of the results. As demonstrated by the experiments, our method is able to generate various reasonable garments with material effects to enrich existing 3D garments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. 3D C (2011) http://www.clo3d.com/. CLO Virtual Fashion Inc

  2. Baraff D, Witkin A (1998) Large steps in cloth simulation. In: SIGGRAPH ’98 Proceedings of the 25th annual conference on computer graphics and interactive techniques, pp 43–54

  3. Berthouzoz F, Garg A, Kaufman DM, Grinspun E, Agrawala M (2013) Parsing sewing patterns into 3d garments. ACM Trans Graph (TOG) 32(4):85:1–85:10

    Article  MATH  Google Scholar 

  4. Besl PJ, McKay ND (1992) Method for registration of 3-d shapes. In: Robotics-DL tentative. International society for optics and photonics, pp 586–606

  5. Biermann H, Martin I, Bernardini F, Zorin D (2002) Cut-and-paste editing of multiresolution surfaces. ACM Trans Graph (TOG) 21(3):312–321

    Article  Google Scholar 

  6. Brouet R, Sheffer A, Boissieux L, Cani MP (2012) Design preserving garment transfer. ACM Trans Graph (TOG) 31(4):36:1–11

    Article  Google Scholar 

  7. Bu S, Liu Z, Han J, Wu J, Ji R (2014) Learning high-level shape feature by deep belief networks for 3d model retrieval and recognition. IEEE Trans Multimed 16(8):2154–2167

    Article  Google Scholar 

  8. Chaudhuri S, Kalogerakis E, Guibas L, Koltun V (2011) Probabilistic reasoning for assembly-based 3d modeling. ACM Trans Graph (TOG) 30(4):35:1–10

    Article  Google Scholar 

  9. Chaudhuri S, Koltun V (2010) Data-driven suggestions for creativity support in 3d modeling. ACM Trans Graph (TOG) 29(6):183:1–10

    Article  Google Scholar 

  10. Chen X, Golovinskiy A, Funkhouser T (2009) A benchmark for 3d mesh segmentation. ACM Trans Graph (TOG) 28(3):73:1–12

    Article  Google Scholar 

  11. Chen X, Zhou B, Lu F, Wang L, Bi L, Tan P (2015) Garment modeling with a depth camera. ACM Trans Graph (TOG) 34(6):203:1–12

    Google Scholar 

  12. Covey L (1992) The costume designer’s handbook: a complete guide for amateur and professional costume designers. Heinemann Educational Publishers

  13. Farbman Z, Hoffer G, Lipman Y, Cohen-Or D, Lischinski D (2009) Coordinates for instant image cloning. ACM Trans Graph (TOG) 28(3):67:1–10

    Article  Google Scholar 

  14. Floater M, Kós G, Reimers M (2005) Mean value coordinates in 3d. Comput Aided Geom Des 22(7):623–631

    Article  MathSciNet  MATH  Google Scholar 

  15. Fu H, Kin-Chung Au O, Tai C (2007) Effective derivation of similarity transformations for implicit laplacian mesh editing. Comput Graphics Forum 26(1):34–45

    Article  Google Scholar 

  16. Funkhouser T, Kazhdan M, Shilane P, Min P, Kiefer W, Tal A, Rusinkiewicz S, Dobkin D (2004) Modeling by example. ACM Trans Graph (TOG) 23:652–663

    Article  Google Scholar 

  17. Golovinskiy A, Funkhouser T (2008) Randomized cuts for 3d mesh analysis. ACM Trans Graph (TOG) 27(5):145:1–12

    Article  Google Scholar 

  18. Gong B, Liu J, Wang X, Tang X (2013) Learning semantic signatures for 3d object retrieval. IEEE Trans Multimed 15(2):369–377

    Article  Google Scholar 

  19. Graphite (2010) http://alice.loria.fr/index.php/software.html. ALICE geometry and lighting 2

  20. Guo X, Lin J, Xu K, Jin X (2014) Creature grammar for creative modeling of 3d monsters. Graph Model 76(5):376–389

    Article  Google Scholar 

  21. Han J, Zhang D, Cheng G, Guo L, Ren J (2015) Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans Geosci Remote Sens 53(6):3325–3337

    Article  Google Scholar 

  22. Huang Q, Koltun V, Guibas L (2011) Joint shape segmentation with linear programming. ACM Trans Graph (TOG) 30(125):1–12

    Google Scholar 

  23. Jain A, Thormählen T, Ritschel T, Seidel H (2012) Exploring shape variations by 3d-model decomposition and part-based recombination. Comput Graphics Forum 31(2):631–640

    Article  Google Scholar 

  24. Jin X, Lin J, Wang CC, Feng J, Sun H (2006) Mesh fusion using functional blending on topologically incompatible sections. Vis Comput 22(4):266–275

    Article  Google Scholar 

  25. Ju T, Schaefer S, Warren J (2005) Mean value coordinates for closed triangular meshes. ACM Trans Graph (TOG)-Proceedings of ACM SIGGRAPH 2005 24(3):561–566

    Google Scholar 

  26. Kalogerakis E, Chaudhuri S, Koller D, Koltun V (2012) A probabilistic model for component-based shape synthesis. ACM Trans Graph (TOG) 31(55):1–11

    Google Scholar 

  27. Kalogerakis E, Hertzmann A, Singh K (2010) Learning 3d mesh segmentation and labeling. ACM Trans Graph (TOG) 29(4):102:1–12

    Article  Google Scholar 

  28. Kreavoy V, Julius D, Sheffer A (2007) Model composition from interchangeable components. In: Computer graphics and applications, PG’07. 15th pacific conference, pp 129–138

  29. Kwok TH, Zhang Y, Wang CC, Liu YJ, Tang K (2016) Styling evolution for tight-fitting garments. IEEE Trans Vis Comput Graph

  30. Lafferty J, McCallum A, Pereira FC (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 18th international conference on machine learning 2001 (ICML 2001), pp 282–289

  31. Lévy B (2003) Dual domain extrapolation. ACM Trans Graph (TOG) 22 (3):364–369

    Article  Google Scholar 

  32. Li J, Lu G (2014) Modeling 3d garments by examples. Comput Aided Des 49:28–41

    Article  MathSciNet  Google Scholar 

  33. Lin J, Jin X, Wang CC, Hui KC (2008) Mesh composition on models with arbitrary boundary topology. IEEE Trans Vis Comput Graph 14(3):653–665

    Article  Google Scholar 

  34. Liu S, Song Z, Liu G, Xu C, Lu H, Yan S (2012) Street-to-shop: Cross-scenario clothing retrieval via parts alignment and auxiliary set. In: IEEE conference on computer vision and pattern recognition (CVPR), 2012, pp 3330–3337

  35. Lv J, Chen X, Huang J, Bao H (2012) Semi-supervised mesh segmentation and labeling. Comput Graphics Forum 31(7):2241–2248

    Article  Google Scholar 

  36. Magnenat-Thalmann N (2010) Modeling and simulating bodies and garments. Springer, Ltd

  37. MayaCloth (2010) http://caad.arch.ethz.ch/info/maya/MayaCloth. Autodesk

  38. Meng Y, Mok P, Jin X (2012) Computer aided clothing pattern design with 3d editing and pattern alteration. Comput Aided Des 44(8):721–734

    Article  Google Scholar 

  39. Meng Y, Wang CC, Jin X (2012) Flexible shape control for automatic resizing of apparel products. Comput Aided Des 44(1):68–76

    Article  Google Scholar 

  40. Ovsjanikov M, Li W, Guibas L, Mitra N (2011) Exploration of continuous variability in collections of 3d shapes. ACM Trans Graph (TOG) 30(4):33:1–10

    Article  Google Scholar 

  41. Robson C, Maharik R, Sheffer A, Carr N (2011) Context-aware garment modeling from sketches. Comput Graph 35(3):604–613

    Article  Google Scholar 

  42. Shamir A (2008) A survey on mesh segmentation techniques. Comput Graphics Forum 27(6):1539–1556

    Article  MATH  Google Scholar 

  43. Sharf A, Blumenkrants M, Shamir A, Cohen-Or D (2006) Snappaste: an interactive technique for easy mesh composition. Vis Comput 22(9):835–844

    Article  Google Scholar 

  44. Sheffer A, de Sturler E (2001) Parameterization of faceted surfaces for meshing using angle-based flattening. Engineering with Computers 17(3):326–337

    Article  MATH  Google Scholar 

  45. Sidi O, van Kaick O, Kleiman Y, Zhang H, Cohen-Or D (2011) Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans Graph (TOG) 30(6):126:1–10

    Article  Google Scholar 

  46. Simari P, Nowrouzezahrai D, Kalogerakis E, Singh K (2009) Multi-objective shape segmentation and labeling. Comput Graphics Forum 28(5):1415–1425

    Article  Google Scholar 

  47. Sorkine O, Cohen-Or D, Lipman Y, Alexa M, Rossl C, Seidel H (2004) Laplacian surface editing. In: Proceedings of the 2004 eurographics/ACM SIGGRAPH symposium on geometry processing, pp 175–184

  48. Takayama K, Schmidt R, Singh K, Igarashi T, Boubekeur T, Sorkine O (2011) Geobrush: interactive mesh geometry cloning. Comput Graphics Forum 30 (2):613–622

    Article  Google Scholar 

  49. Torralba A, Murphy K, Freeman W (2007) Sharing visual features for multiclass and multiview object detection. IEEE Trans Pattern Anal Mach Intell 29(5):854–869

    Article  Google Scholar 

  50. Turquin E, Wither J, Boissieux L, Cani M, Hughes J (2007) A sketch-based interface for clothing virtual characters. IEEE Comput Graph Appl:72–81

  51. Umetani N, Kaufman D, Igarashi T, Grinspun E (2011) Sensitive couture for interactive garment modeling and editing. ACM Trans Graph (TOG) 30:1–9

    Article  Google Scholar 

  52. Van Kaick O, Tagliasacchi A, Sidi O, Zhang H, Cohen-Or D, Wolf L, Hamarneh G (2011) Prior knowledge for part correspondence. Comput Graphics Forum 30(2):553–562

    Article  Google Scholar 

  53. Volino P, Magnenat-Thalmann N (2005) Accurate garment prototyping and simulation. Comput-Aided Des Applic 2(1):645–654

    Article  Google Scholar 

  54. Wan J, Wang D, Hoi SCH, Wu P, Zhu J, Zhang Y, Li J (2014) Deep learning for content-based image retrieval: a comprehensive study. In: Proceedings of the ACM international conference on multimedia, pp 157–166

  55. Wang C, Wang Y, Yuen M (2003) Feature based 3d garment design through 2d sketches. Comput Aided Des 35(7):659–672

    Article  Google Scholar 

  56. Wang Y, Asafi S, van Kaick O, Zhang H, Cohen-Or D, Chen B (2012) Active co-analysis of a set of shapes. ACM Trans Graph (TOG) 31(6):165:1–10

    Article  Google Scholar 

  57. Xu K, Zhang H, Cohen-Or D, Chen B (2012) Fit and diverse: set evolution for inspiring 3d shape galleries. ACM Trans Graph (TOG) 31(4):57:1–10

    Article  Google Scholar 

  58. Yu Y, Zhou K, Xu D, Shi X, Bao H, Guo B, Shum H (2004) Mesh editing with poisson-based gradient field manipulation. ACM Trans Graph (TOG)-Proceedings of ACM SIGGRAPH 2004(23):644– 651

    Article  Google Scholar 

  59. Yuan M, Khan IR, Farbiz F, Yao S, Niswar A, Foo MH (2013) A mixed reality virtual clothes try-on system. IEEE Trans Multimed 15(8):1958–1968

    Article  Google Scholar 

  60. Zhang D, Han J, Cheng G, Liu Z, Bu S, Guo L (2015) Weakly supervised learning for target detection in remote sensing images. IEEE Geosci Remote Sens Lett 12(4):701–705

    Article  Google Scholar 

  61. Zuffi S, Black MJ (2015) The stitched puppet: a graphical model of 3d human shape and pose. In: 2015 IEEE Conference on computer vision and pattern recognition (CVPR), pp 3537–3546

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (61462051, 61462056, 61272192, 61502541, 81560296), the Applied Fundamental Research Project of Yunnan Province (2014FB133), the Applied Fundamental Research Key Project of Yunnan Province(2014FA028), the Science Research Funded Project of Kunming University of Science and Technology (KKSY201403119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Su, Z., Fu, X. et al. A data-driven editing framework for automatic 3D garment modeling. Multimed Tools Appl 76, 12597–12626 (2017). https://doi.org/10.1007/s11042-016-3688-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3688-4

Keywords

Navigation