Multimedia Tools and Applications

, Volume 76, Issue 10, pp 12369–12390 | Cite as

Shape exploration of 3D heterogeneous models based on cages

  • Weiliang Meng
  • Jianwei Guo
  • Xavier Bonaventura
  • Mateu Sbert
  • Xiaopeng Zhang
Article
  • 216 Downloads

Abstract

Shape exploration of 3D heterogeneous models is essential for special effects in 3D animation and games. As heterogeneous models have different numbers of vertices and different topological structures,the mapping between source and target model may be ambiguous for deformation transfer. We propose a new framework for heterogeneous model shape exploration based on cages, which provides a feasible and fast solution to this open problem. Using a public cage as an intermediate medium, the deformation of the source models can be denoted as the position changing of the cage. When applying the cage change to the target model, rough deformation transfer can be achieved. After an optimization and interpolation to generate the explored shape of the heterogeneous target model, animation can be acquired. Our method is not only suitable for triangle meshes, but also for quadrilateral meshes or any other type of meshes. We demonstrate the validity of our scheme by a series of shape exploration experiments with different models.

Keywords

Deformation transfer Cage coordinates Differential coordinates Shape space Interpolation 

Notes

Acknowledgments

This work is supported in part by the National High-Tech Research and Development Program of China (863 Program) with No.2015AA016402, and in part by National Natural Science Foundation of China with Nos. 61571439, 61561003, 61471261,61372190, and 61202324.

References

  1. 1.
    Baran I, Vlasic D, Grinspun E, Popović J (2009) Semantic deformation transfer. ACM Trans Graph 28(3):36:1–36:6CrossRefGoogle Scholar
  2. 2.
    Beier T, Neely S (1992) Feature-based image metamorphosis. In: SIGGRAPH ’92: Proceedings Of the 19th annual conference on computer graphics and interactive techniques. ACM, NY, USA, pp 35–42Google Scholar
  3. 3.
    Ben-Chen M, Weber O, Gotsman C (2009) Spatial deformation transfer. In: Proceedings of the 2009 ACM SIGGRAPH/eurographics symposium on computer animation. ACM, pp 67–74Google Scholar
  4. 4.
    Ben-Chen M, Weber O, Gotsman C (2009) Variational harmonic maps for space deformation. ACM Trans Graph 28(3):1–11CrossRefGoogle Scholar
  5. 5.
    Bookstein FL (1989) Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567–585MATHCrossRefGoogle Scholar
  6. 6.
    Carmo MPD (1976) Differential Geometry of Curves and Surfaces, Chapter 1, pp. 16–23 Prentice-HallGoogle Scholar
  7. 7.
    Chen L, Huang J, Sun H, Bao H (2010) Cage-based deformation transfer. Comput Graph 34(2):107–118CrossRefGoogle Scholar
  8. 8.
    Cohen-Or D, Sorkine O (2006) Encoding meshes in differential coordinates. In: (SCCG06)Proceedings of the 22nd spring conference on computer graphics. ACM PressGoogle Scholar
  9. 9.
    Derose T, Meyer M (2006) Harmonic coordinates. Technical Report. Pixar Animation StudiosGoogle Scholar
  10. 10.
    Floater MS (2003) Mean value coordinates. Comput Aided Geom Des 20(1):19–27MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Floater MS, Kós G, Reimers M (2005) Mean value coordinates in 3d. Comput Aided Geom Des 22(7):623–631MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Fröhlich S, Botsch M (2011) Example-driven deformations based on discrete shells. In: Computer graphics forum, vol 30. Wiley Online Library, pp 2246–2257Google Scholar
  13. 13.
    García FG, Paradinas T, Coll N, Patow G (2013) *Cages:: A multilevel, multi-cage-based system for mesh deformation. ACM, NY, USA, pp 24:1–24:13MATHGoogle Scholar
  14. 14.
    Garland M, Heckbert PS (1997) Surface simplification using quadric error metrics. Computer Graphics 31(Annual Conference Series):209–216Google Scholar
  15. 15.
    Hoppe H (1996) Progressive meshes. In: SIGGRAPH ’96: Proceedings Of the 23rd annual conference on computer graphics and interactive techniques. ACM, NY, USA, pp 99–108Google Scholar
  16. 16.
    Hormann K, Floater MS (2006) Mean value coordinates for arbitrary planar polygons. ACM Trans Graph 25(4):1424–1441CrossRefGoogle Scholar
  17. 17.
    Jacobson A, Baran I, Popovic J, Sorkine O (2011) Bounded biharmonic weights for real-time deformation. In: SIGGRAPH ’11: ACM SIGGRAPH 2011 PapersGoogle Scholar
  18. 18.
    Joshi P, Meyer M, DeRose T, Green B, Sanocki T (2007) Harmonic coordinates for character articulation. ACM, NY, USA, p 71Google Scholar
  19. 19.
    Ju T, Schaefer S, Warren J (2005) Mean value coordinates for closed triangular meshes. ACM Trans Graph 24(3):561–566CrossRefGoogle Scholar
  20. 20.
    Ju T, Zhou QY, Van De Panne M, Cohen-Or D, Neumann U (2008) Reusable skinning templates using cage-based deformations. ACM Trans Graph 27(5):1CrossRefGoogle Scholar
  21. 21.
    Karni Z, Gotsman C (2000) Spectral compression of mesh geometry. In: SIGGRAPH ’00: Proceedings Of the 27th annual conference on computer graphics and interactive techniques. ACM Press, NY, USA, pp 279–286Google Scholar
  22. 22.
    Kilian M, Mitra NJ, Pottmann H (2007) Geometric modeling in shape space. ACM Trans Graph 26(3):64CrossRefGoogle Scholar
  23. 23.
    Li XY, Ju T, Hu SM (2013) Cubic mean value coordinates. ACM Trans Graph 98(4):1–10MATHGoogle Scholar
  24. 24.
    Lipman Y, Kopf J, Cohen-Or D, Levin D (2007) Gpu-assisted positive mean value coordinates for mesh deformations. In: SGP ’07: Proceedings Of the fifth eurographics symposium on geometry processing. Eurographics Association, Switzerland, pp 117–123Google Scholar
  25. 25.
    Lipman Y, Levin D, Cohen-Or D (2008) Green coordinates. In: SIGGRAPH ’08: ACM SIGGRAPH 2008 Papers. ACM, NY, USA, pp 1–10Google Scholar
  26. 26.
    Luebke D, Harris M, Krüger J, Purcell T, Govindaraju N, Buck I, Woolley C, Lefohn A (2004) Gpgpu: general purpose computation on graphics hardware. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Course notes. ACM, NY, USA, p 33Google Scholar
  27. 27.
    Ma C, Huang H, Sheffer A, Kalogerakis E, Wang R (2014) Analogy-driven 3D style transfer. Comput Graph Forum 33(2):175–184CrossRefGoogle Scholar
  28. 28.
    MacCracken R, Joy KI (1996) Free-form deformations with lattices of arbitrary topology. In: SIGGRAPH ’96: Proceedings Of the 23rd annual conference on computer graphics and interactive techniques. ACM, NY, USA, pp 181–188Google Scholar
  29. 29.
    Ovsjanikov M, Ben-Chen M, Solomon J, Butscher A, Guibas L (2012) Functional maps: a flexible representation of maps between shapes. ACM Trans Graph (TOG) 31(4):30CrossRefGoogle Scholar
  30. 30.
    Shlens J (2005) A tutorial on principal component analysis. Systems Neurobiology Laboratory, University of California at San DiegoGoogle Scholar
  31. 31.
    Sorkine O, Cohen-Or D, Lipman Y, Alexa M, Rössl C, Seidel HP (2004) Laplacian surface editing. In: SGP ’04: Proceedings Of the 2004 eurographics/ACM SIGGRAPH symposium on geometry processing. ACM, NY, USA, pp 175–184Google Scholar
  32. 32.
    Sorkine O, Cohen-Or D, Toledo S (2003) High-pass quantization for mesh encoding. In: SGP ’03: Proceedings Of the 2003 eurographics/ACM SIGGRAPH symposium on geometry processing. Eurographics Association, Switzerland, pp 42–51Google Scholar
  33. 33.
    Sumner RW, Popović J (2004) Deformation transfer for triangle meshes. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers. ACM, NY, USA, pp 399–405Google Scholar
  34. 34.
    Thiery JM, Tierny J, Boubekeur T (2012) Cager: Cage-based reverse engineering of animated 3d shapes. Comput Graph Forum 31(8):2303–2316CrossRefGoogle Scholar
  35. 35.
    Turk G, O’Brien JF (2005) Shape transformation using variational implicit functions. In: ACM SIGGRAPH 2005 Courses. ACM, p 13Google Scholar
  36. 36.
    Wang Y, Jacobson A, Barbič J, Kavan L (2015) Linear subspace design for real-time shape deformation. ACM Trans Graph 34(4):57:1–57:11CrossRefGoogle Scholar
  37. 37.
    Weber O, Ben-Chen M, Gotsman C (2009) Complex barycentric coordinates with applications to planar shape deformation. Comput Graph Forum (Proc Eurograph) 28(2)Google Scholar
  38. 38.
    Weber O, Sorkine O, Lipman Y, Gotsman C (2007) Context-aware skeletal shape deformation. Comput Graph Forum (Proc Eurograph) 26(3)Google Scholar
  39. 39.
    Winkler T, Drieseberg J, Alexa M, Hormann K (2010) Multi-scale geometry interpolation. In: Computer graphics forum, vol 29. Wiley Online Library, pp 309–318Google Scholar
  40. 40.
    Yoshiyasu Y, Yamazaki N (2012) Detail-aware spatial deformation transfer. Comput Animat Virtual Worlds 23(3-4):225–233CrossRefGoogle Scholar
  41. 41.
    Zhang J, Deng B, Liu Z, Patanè G, Bouaziz S, Hormann K, Liu L (2014) Local barycentric coordinates. ACM Trans Graph 33(6):188:1–188:12Google Scholar
  42. 42.
    Zhao Y, Pan B, Xiao C, Peng Q (2012) Dual-domain deformation transfer for triangular meshes. Comput Animat Virtual Worlds 23(3-4):447–456CrossRefGoogle Scholar
  43. 43.
    Zhou K, Xu W, Tong Y, Desbrun M (2010) Deformation transfer to multi-component objects. In: Comput graph forum, vol 29, pp 319–325Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Weiliang Meng
    • 1
  • Jianwei Guo
    • 1
  • Xavier Bonaventura
    • 3
  • Mateu Sbert
    • 2
    • 3
  • Xiaopeng Zhang
    • 1
  1. 1.NLPR-LIAMAInstitute of Automation, CASBeijingChina
  2. 2.Tianjin UniversityTianjinChina
  3. 3.Graphics and Imaging LaboratoryUniversity of GironaGironaSpain

Personalised recommendations