Advertisement

Multimedia Tools and Applications

, Volume 76, Issue 8, pp 10357–10369 | Cite as

Exploiting character networks for movie summarization

  • Quang Dieu Tran
  • Dosam Hwang
  • O-Joun Lee
  • Jai E. Jung
Article

Abstract

Movie summarization focuses on providing as much information as possible for shorter movie clips while still keeping the content of the original movie and presenting a faster way for the audience to understand the movie. In this paper, we propose a novel method to summarize a movie based on character network analysis and the appearance of protagonist and main characters in the movie. Experiments were carried out for 2 movies (Titanic (1997) and Frozen (2013)) to show that our method outperforms conventional approaches in terms of the movie summarization rate.

Keywords

Movie summarization Movie analysis Social network analysis Video summarization Movie character analysis 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2014R1A2A2A05007154).

References

  1. 1.
    Bello-Orgaz G, Jung JJ, Camacho D (2016) Social big data: recent achievements and new challenges. Inf Fusion 28:45–59CrossRefGoogle Scholar
  2. 2.
    Bordwell D (2006) The way Hollywood tells it: story and style in modern movies. University of California PressGoogle Scholar
  3. 3.
    Chen BW, Wang JC, Wang JF (2009) A novel video summarization based on mining the story-structure and semantic relations among concept entities. IEEE Trans Multimedia 11(2):295–312CrossRefGoogle Scholar
  4. 4.
    Cheng KY, Luo SJ, Chen BY, Chu HH (2009) Smartplayer: user-centric video fast-forwarding. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 789–798Google Scholar
  5. 5.
    Del Fabro M, Böszörmenyi L (2013) State-of-the-art and future challenges in video scene detection: a survey. Multimedia systems 19(5):427–454CrossRefGoogle Scholar
  6. 6.
    Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Furini M, Ghini V (2006) An audio-video summarization scheme based on audio and video analysis. In: IEEE consumer communications and networking conferenceGoogle Scholar
  8. 8.
    Gianluigi C, Raimondo S (2006) An innovative algorithm for key frame extraction in video summarization. Real-Time Image Proc 1(1):69–88CrossRefGoogle Scholar
  9. 9.
    Hong M, Jung JJ (2016) MyMovieHistory: social recommender system by discovering social affinities among users. Cybern Syst 47(1-2):88–110CrossRefGoogle Scholar
  10. 10.
    Jung JJ (2012) Attribute selection-based recommendation framework for short-head user group: an empirical study by movielens and imdb. Expert Syst Appl 39(4):4049–4054CrossRefGoogle Scholar
  11. 11.
    Jung JJ (2015) Big bibliographic data analytics by random walk model. Mobile Netw Appl 20(4):533–537CrossRefGoogle Scholar
  12. 12.
    Jung JJ, You E, Park SB (2013) Emotion-based character clustering for managing story-based contents: a cinemetric analysis. Multimedia Tools Appl 65 (1):29–45CrossRefGoogle Scholar
  13. 13.
    Lienhart R, Pfeiffer S, Effelsberg W (1997) Video abstracting. J Commun ACM 40(12):54–62CrossRefGoogle Scholar
  14. 14.
    Ma YF, Hua XS, Lu L, Zhang HJ (2005) A generic framework of user attention model and its application in video summarization. IEEE Trans Multimedia 7 (5):907–919CrossRefGoogle Scholar
  15. 15.
    Monaco J (1981) How to read a film: the art, technology, language, history and theory of film and media. Oxford University PressGoogle Scholar
  16. 16.
    Money AG, Agius H (2008) Video summarisation: a conceptual framework and survey of the state of the art. Vis Commun Image Represent 19(2):121–143CrossRefGoogle Scholar
  17. 17.
    Ngo CW, Ma YF, Zhang HJ (2005) Video summarization and scene detection by graph modeling. IEEE Trans Circuits Syst Video Technol 15(2):296–305CrossRefGoogle Scholar
  18. 18.
    Park SB, Oh KJ, Jo GS (2012) Social network analysis in a movie using character-net. Multimedia Tools Appl 59(2):601–627CrossRefGoogle Scholar
  19. 19.
    Peng WT, Chu WT, Chang CH, Chou CN, Huang WJ, Chang WY, Hung YP (2011) Editing by viewing: automatic home video summarization by viewing behavior analysis. IEEE Trans Multimedia 13(3):539–550CrossRefGoogle Scholar
  20. 20.
    Phillips MA, Huntley C (1996) Dramatica: a new theory of story. Screenplay SystemsGoogle Scholar
  21. 21.
    Qu W, Zhang Y, Wang D, Feng S, Yu G (2015) Semantic movie summarization based on string of ie-rolenets. Comput Visual Media 1(2):129–141CrossRefGoogle Scholar
  22. 22.
    Salamin H, Favre S, Vinciarelli A (2009) Automatic role recognition in multiparty recordings: using social affiliation networks for feature extraction. IEEE Trans Multimedia 11(7):1373–1380CrossRefGoogle Scholar
  23. 23.
    Sang J, Xu C (2010) Character-based movie summarization. In: Proceedings of the international conference on multimedia. ACM, pp 855–858Google Scholar
  24. 24.
    Sharff S (1982) The elements of cinema: toward a theory of cinesthetic impact. Columbia University PressGoogle Scholar
  25. 25.
    Tran QD, Jung JE (2015) Cocharnet: extracting social networks using character co-occurrence in movies. Universal Comput Sci 21(6):796–815Google Scholar
  26. 26.
    Tsai CM, Kang LW, Lin CW, Lin W (2013) Scene-based movie summarization via role-community networks. IEEE Trans Circuits Syst Video Technol 23(11):1927–1940CrossRefGoogle Scholar
  27. 27.
    Weng CY, Chu WT, Wu JL (2009) Rolenet: movie analysis from the perspective of social networks. IEEE Trans Multimedia 11(2):256–271CrossRefGoogle Scholar
  28. 28.
    Zhai Y, Shah M (2006) Video scene segmentation using markov chain monte carlo. IEEE Trans Multimedia 8(4):686–697CrossRefGoogle Scholar
  29. 29.
    Zhu X, Wu X, Fan J, Elmagarmid AK, Aref WG (2004) Exploring video content structure for hierarchical summarization. Multimedia Systems 10(2):98–115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Quang Dieu Tran
    • 1
  • Dosam Hwang
    • 1
  • O-Joun Lee
    • 2
  • Jai E. Jung
    • 2
  1. 1.Computer Engineering DepartmentYeungnam UniversityGyeongsanKorea
  2. 2.Department of Computer EngineeringChung-Ang UniversitySeoulKorea

Personalised recommendations