Skip to main content
Log in

Blind prediction-based wavelet watermarking

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In recent years, wavelet transform has been widely applied in multimedia signal processing and digital watermarking is involved for ensuring security. This study presents a blind wavelet-based watermarking incorporated with the Human Visual System (HVS), which embeds watermarks into detail-subband coefficients. Since imperceptibility is the most significant issue in watermarking, the approximation band is maintained constant, while the detail subbands are modified to carry information. The perceptual embedded weights for all subbands are determined according to the Just Noticeable Distortion (JND) criterion. The strength of the modification is investigated to provide a balanced result between robustness and image quality. In the decoder, the Least-Mean-Square (LMS) is employed to predict the original detail-subband coefficients and then extract the embedded watermarks. As documented in the experimental results, the proposed method provides good robustness and excellent image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. AI-khassaweneh M, Aviyente S (2006) Spatially adaptive wavelet thresholding for image watermarking. IEEE Int Conf Multimed Expo:1597–1600

  2. Bradley AP (1999) A wavelet visible difference predictor. IEEE Trans Image Process 8(5):717–730

    Article  Google Scholar 

  3. Cox I, Kilian J, Leighton FT, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12):1673–1687

    Article  Google Scholar 

  4. De Christophe C, Delaigle J-F, Macq B (2002) Invisibility and application functionalities in perceptual watermarking – an overview. Proc IEEE 90(1):64–77

    Article  Google Scholar 

  5. Dugad R, Ratakonda K, Ahuja N (1998) A new wavelet-based scheme for watermarking images. IEEE Int Conf Image Process 2:419–423

    Google Scholar 

  6. Guo JM (2007) A new model-based digital halftoning and data hiding designed with LMS optimization. IEEE Trans Multimed 9(4):687–700

    Article  Google Scholar 

  7. Guo JM, Liu YF (2012) High capacity data hiding for error-diffused block truncation coding. IEEE Trans Image Process 21(12):4808–4818

    Article  MathSciNet  Google Scholar 

  8. Guo JM, Wu MF, Kang YC (2009) Watermarking in conjugate ordered dither block truncation coding images. Signal Process 89(10):1864–1882

    Article  MATH  Google Scholar 

  9. Hsu CT, Wu JL (1999) Hidden digital watermarks in images. IEEE Trans Image Process 8(1):58–68

    Article  Google Scholar 

  10. Huang HC, Pan JS, Huang YH, Wang FH, Huang KC (2007) Progressive watermarking techniques using Genetic algorithms. Circ Syst Signal Process 26(5):671–687

    Article  MATH  Google Scholar 

  11. Huang J, Shi YQ, Shi Y (2000) Embedding image watermarks in DC components. IEEE Trans Circ Syst Video Technol 10(6):974–979

    Article  Google Scholar 

  12. Huo F, Guo X (2006) A wavelet based image watermarking scheme. IEEE Int Conf Image Process:2573–2576

  13. Inoue H, Miyazaki A, Yamsmoto A, Katsura T (1998) A digital watermark based on the wavelet transform and its robustness on image compression. IEEE Int Conf Image Process 2:391–395

    Google Scholar 

  14. Khelifi F, Bouridane A, Kurugollu F, Thompson AI (2005) An improved wavelet-based image watermarking technique. IEEE Conf Adv Video Signal Based Surveill:588–592

  15. Li J, Peng H, Pei Z (2007) Adaptive watermarking algorithm using SVR in wavelet domain. IEEE of Int Conf Comput Inf Sci:207–211

  16. Lu CS, Huang SK, Sze CJ, Liao HY (2000) Cocktail watermarking for digital image protection. IEEE Trans Multimed 2(4):209–224

    Article  Google Scholar 

  17. Lu CS, Liao HY (2001) Multipurpose watermarking for image authentication and protection. IEEE Trans Image Process 10(10):1579–1592

    Article  MATH  Google Scholar 

  18. Nafornita C, Isar A, Borda M (2005) Image watermarking based on the discrete wavelet transform statistical characteristics. Proc Int Conf Comput Tool 2:943–946

    Google Scholar 

  19. Nikolaidis N, Pitas I (1998) Robust image watermarking in the spatial domain. Signal Process 66(3):385–403

    Article  MATH  Google Scholar 

  20. Pan JS, Hsin YC, Huang HC, Huang KC (2004) Robust image watermarking based on multiple description vector quantisation. Electron Lett 40(22):1409–1410

    Article  Google Scholar 

  21. Podilchuk CI, Zeng W (1998) Image-adaptive watermarking using visual models. IEEE J Sel Areas Commun 16(4):525–539

    Article  Google Scholar 

  22. Ratnakar V (1999) Image watermarking with zero-mean patches. Conf Record Thirty-Third Asilomar Conf Signals Syst Comput 2:1513–1517

    Google Scholar 

  23. Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Acoust Speech Signal Process 41(12):3445–3462

    Article  MATH  Google Scholar 

  24. Solachidis V, Pitas I (2001) Circularly symmetric watermark embedding in 2-D DFT domain. IEEE Trans Image Process 6(11):1741–1753

    Article  MATH  Google Scholar 

  25. Swanson MD, Kobayashi M, Tewfik AH (1998) Multimedia data-embedding and watermarking technologies. Proc IEEE 86(6):1064–1087

    Article  Google Scholar 

  26. van Schyndel RG, Tirkel AZ, Osborne CF (1994) A digital watermark. IEEE Int Conf Image Process 2:86–90

    Article  Google Scholar 

  27. Wang S, Miyauchi R, Unoki M, Kim NS (2015) Tampering detection scheme for speech signals using sormant enhancement based watermarking. J Inf Hiding Multimed Signal Process 6(6):1264–1283

    Google Scholar 

  28. Wang Z, Wang N, Shi B (2006) A novel blind watermarking scheme based on neural network in wavelet domain. Proceeding of the 6th World Congress on Intelligent Control and Automation. 1:3024–3027

  29. Watson AB, Yang GY, Solomon JA, Villasenor J (1997) Visibility of wavelet quantization noise. IEEE Trans Image Process 6(8):1164–1175

    Article  Google Scholar 

  30. Widow B, Hoff ME (1960) Adaptive switching circuits. WESCON Conv Rec 4:96–140

    Google Scholar 

  31. Windrow B, Mccool JM, Larimore MG, Johnson CR (1976) Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proc IEEE 64(8):1151–1162

    Article  MathSciNet  Google Scholar 

  32. Yan B, Wang YF, Song LY, Yang HM (2015) Power spectrum compliant QIM watermarking for autoregressive host signals. J Inf Hiding Multimed Signal Process 6(5):882–888

    Google Scholar 

  33. Yen JC, Chen HC, Juan JH (2006) Blind watermarking based on the wavelet transform. Proceeding of Seventh International Conference on Parallel and Distributed Computing. Appl Technol:474–478

  34. Yeung MM, Mintzer F (1997) An invisible watermarking technique for image verification. IEEE Int Conf Image Process 2:680–683

    Article  Google Scholar 

  35. Zhu W, Xiong Z, Zhang YQ (1999) Multiresolution watermarking for images and video. IEEE Trans Circ Syst Video Technol 9(4):545–550

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiann-Der Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, JM., Liu, YF., Lee, JD. et al. Blind prediction-based wavelet watermarking. Multimed Tools Appl 76, 9803–9828 (2017). https://doi.org/10.1007/s11042-016-3580-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3580-2

Keywords

Navigation