Advertisement

Multimedia Tools and Applications

, Volume 76, Issue 8, pp 10801–10823 | Cite as

E-health monitoring system enhancement with Gaussian mixture model

  • Soumen Kanrar
  • Prasenjit Kumar Mandal
Article

Abstract

In order to enhance the healthcare system, we have designed and developed a system prototype which remotely monitors patient’s vital parameters by using mobile based android application. Proposed E-health care system collects patient’s biological and personal information with the corresponding vital parameters and stores this Meta data information into the health care database servers. The distributed servers are connected with GSP system. So the extracted information from the server is directly feed to the doctor’s mobile device as well as to the patient's mobile devices in a presentable format. This system also uses Frontline SMS as an SMS service which is used to send SMS to the doctor’s mobile device automatically, when any one of the patient’s vital parameter goes out of normal range. In this paper, we present the GMM (Gaussian mixture model) based on extracted features of the patient information and assign it to the specialized doctor. In this work, we have shown that by GMM based algorithm efficiently balances the patient load to the doctor. This novel approach enhances the E-health monitoring system for normal situations as well as in the case of Natural disaster. The proposed load balancing approach gives relief to the patient for unnecessary long delay to receive medical advice. The presented result in this work shown that, the doctors from all category and specialization are loaded rationally and uniformly. According to our knowledge GMM based approach is the new additional component to enhance the E-health care system.

Keywords

Android Database server Frontline SMS GPS GMM Healthcare system Vital parameters 

Notes

Acknowledgments

The authors are grateful to Sharmista Das Kanrar from Bishop Westcott, Ranchi, India.

References

  1. 1.
    Al – Ali R, Al – Rousan M, Al-Shaikh M. Embedded system-based mobile patient monitoring device. 16th IEEE Symposium on Computer-Based Medical System (CBMS’03)Google Scholar
  2. 2.
    C, Pradeep Kumar Ray, R MacIntyre (2011) mHealth for the control of TB/HIV in developing Countries. 13th International Conference on e-Health Networking, IEEE. page 9–14. doi: 10.1109/HEALTH.2011.6026797
  3. 3.
    Challa S, Geethkumari G,Prasad CSN (2011) Patient data viewer: an android application for healthcare. Annual IEEE India Conference (INDICON), Publication Year, pp. 1–4.doi:  10.1109/INDCON.2011.6139641
  4. 4.
    Chan V, Ray P, Parameswaran N (2008) Mobile e-Health monitoring: an agent-based approach. IET Commun 2(2):223–230. doi: 10.1049/iet-com:20060646 CrossRefGoogle Scholar
  5. 5.
    Creswell JW (2003) Research design: qualitative, quantitative, and mixed methods approaches. Sage Publications, Thousand Oaks. ISBN 0-7619-2441-8Google Scholar
  6. 6.
    Dorman K, Yahyanejad M, Nahapetian A, Sarrafzadeh M, McCarthy W, Kaiser W, Nutrition Monitor (2009) A food purchase and consumption monitoring mobile system. Conference on Mobile Computing, Applications, and Services (MobiCASE)Google Scholar
  7. 7.
    Jiang J, Yan Z, Shi J (2006) The design of medical assistant system for ward doctors. 3rd IEEE - EMBS International Summer School and Symposium on Medical Devices and Biosensors MIT, Boston, USA, Sept.4–6. page 109–111. doi: 10.1109/ISSMDBS.2006.360110
  8. 8.
    Kanrar S et al (2015) Text and language independent speaker identification by GMM based i vector. ICCCT ‘15 –ACM proceeding, pp 95–100. doi:  10.1145/2818567.2818585
  9. 9.
    Kanrar S et al (2015) Detect mimicry by enhancing the speaker recognition system. Advances in Intelligent Systems and Computing 339:21–31.doi :  10.1007/978-81-322-2250-7_3
  10. 10.
    Kanrar S et al (2015) Impact of threshold to identify vocal tract. Adv Intell Syst Comput 404:97–105Google Scholar
  11. 11.
    Lan M, Nahapetian A, Vahdatpour A, Au L, Kaiser W, Sarrafzadeh M (2009) SmartFall: an automatic fall detection system based on subsequence matching for the SmartCane. BodynetsGoogle Scholar
  12. 12.
    Lee SI, Ling C, Nahapetian A, Sarrafzadeh M (2012) A framework for data quality estimation of on-body cardiac sensor networks. IEEE Consumer Communications and Networking Conference (CCCN)Google Scholar
  13. 13.
    Lee SI, Woodbridge J, Nahapetian A, Sarrafzadeh M (2012) MARHS: Mobility assessment system with remote healthcare functionality for movement disorders. ACM SIGHIT International Health Informatics Symposium (IHI)Google Scholar
  14. 14.
    Li JH, Moore N, Akter S, Bleisten S, Ray P (2010) mHealth for influenza pandemic surveillance in developing countries. 43rd Hawaii International Conference on System Sciences. Page 1–9, doi :  10.1109/HICSS.2010.274
  15. 15.
    Mehta B, Rengarajan D, Prasad A (2012) Real time patient tele-monitoring system using LabVIEW. Int J Sci Eng Res 3(4). ISSN 2229–5518Google Scholar
  16. 16.
    Minutolo A, Sannino G, Esposito M, Pietro GD (2010) A ruled-based mHealth system for cardiac monitoring. 2010 I.E. EMBS Conference on Biomedical Engineering & Science (IECBES 2010), Kuala Lumpur, MalaysiaGoogle Scholar
  17. 17.
    Nie L, Akbari M, Li T, Chua T (2014) A joint local–global approach for medical terminology assignment. In Med Inf Retrieval Workshop SIGIR 2014:24–27Google Scholar
  18. 18.
    Nie L, Li T, Akbari M, Shen J, Chua T (2014b) WenZher: comprehensive vertical search for healthcare domain. Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval 1245–1246Google Scholar
  19. 19.
    Nie L, Wang M, Zhang L et al (2014) Disease inference from health-related questions via sparse deep learning. IEEE Trans Knowl Data Eng 27(8):2107–2119CrossRefGoogle Scholar
  20. 20.
    Nie L, Zhang L, Yang Y, Wang M, Hong R, Chua T (2015) Beyond doctors: future health prediction from multimedia and multimodal observations. MM’s15,23rd ACM international conference on Multimedia, pp 591–600. doi:  10.1145/2733373.2806217
  21. 21.
    Nie L, Zhao Y, Akbari M, Shen J, Chua T (2015) Bridging the vocabulary gap between health seekers and healthcare knowledge. IEEE Trans Knowl Data Eng 27(2):396–409CrossRefGoogle Scholar
  22. 22.
    Noshadi H, Ahmadian S, Dabiri F, Nahapetian A, Stathopoulus T, Batalin M, Kaiser W, Sarrafzadeh M (2008) Smart shoe for balance, fall risk assessment and applications in wireless health. Microsoft eScience WorkshopGoogle Scholar
  23. 23.
    Sapal T et al (2004) Mobile e-Health: the unwired evolution of telemedicine. Telemed J e-Health 9(3):247–257. doi: 10.1089/153056203322502632 Google Scholar
  24. 24.
    Sebastian S, Jacob NR, Manmadhan Y, Anand VR, Jayashree MJ (2012) Remote patient monitoring system. Int J Distributed Parallel Syst (IJDPS) 3(5)Google Scholar
  25. 25.
    Sloane D, Diamant A, Lewis L et al (2003) Improving the nutritional resource environment for healthy living through community-based participatory research. The REACH Coalition of the African American Building a Legacy of Health Project. J Gen Intern Med 18:1–8Google Scholar
  26. 26.
    Sposaro F, Danielson J, Tyson G (2010) iwander: an android application for dementia patients. 32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina, August 31–September 4Google Scholar
  27. 27.
    Sposaro F, Tyson G (2009) iFall: an android application for fall monitoring and response. 31st Annu Int Conf IEEE Eng Med Biol Soc 1:6119–6122Google Scholar
  28. 28.
    Suh M-k, Chen C-A, Woodbridge J, Kai TM, Kim JI, Nahapetian A, Evangelista LS, Sarrafzadeh M (2011) A remote patient monitoring system for congestive heart failure. Springer J Med Syst (JOMS) 35(5):1165–1179CrossRefGoogle Scholar
  29. 29.
    Suh M-k, Lee K, Heu A, Nahapetian A, Sarrafzadeh M (2009) Bayesian networks-based interval training guidance system for cancer rehabilitation. Conference on Mobile Computing, Applications, and Services (MobiCASE)Google Scholar
  30. 30.
    Suh M-k, Lee KJ, Nahapetian A, Sarrafzadeh M (2009) Interval training guidance system with music and wireless group exercise motivations. IEEE Symposium on Industrial Embedded Systems (SIES)Google Scholar
  31. 31.
    Suh M-k, Nahapetian A, Woodbridge J, Rofouei M, Sarrafzadeh M (2012) Machine learning-based adaptive wireless interval training guidance system. ACM/Springer Mob Netw Appl (MONET) 17(2):163–177CrossRefGoogle Scholar
  32. 32.
    Wac K, Bargh M, Peddemors A, Pawar P, van Beijnum B-J, Bults R (2008) Power- and delay-aware mobile application-data flow adaptation: the MobiHealth system case study. 10th IEEE Int Conf on e-Health Networking, Applications and Service (HEALTHCOM 2008), page 212–218. doi:  10.1109/HEALTH.2008.4600138
  33. 33.
    Wu WH, Bui AAT, Batalin MA, Au LK, Binney JD, Kaiser WJ, MEDIC (2008) Medical embedded device for individualized care. Artif Intell Med 42(2):137–152CrossRefGoogle Scholar
  34. 34.
    Yan Y et al (2013) No matter where you are : flexible graph­guided multi­task learning for multi­view head pose classification under target motion computer vision (ICCV). 2013 I.E. International Conference, pp 1177–1184, ISSN: 1550–5499. doi:  10.1109/ICCV.2013.150
  35. 35.
    Yan Y et al (2013) Multi­task linear discriminant analysis for multi­view action recognition, Image Processing (ICIP). 2013 20th IEEE International Conference, pp 2842–2846. doi:  10.1109/ICIP.2013.6738585
  36. 36.
    Yan Y et al (2015) Event oriented dictionary learning for complex event detection. IEEE Trans Image Process 24(6):1867–1878. doi: 10.1109/TIP.2015.2413294 MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zhang L et al (2013) Discovering discriminative graphlets for aerial image categories recognition. IEEE Trans Image Process 22(12):5071–5084. doi: 10.1109/TIP.2013.2278465 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhang L et al (2014) A probabilistic associative model for segmenting weakly supervised images. IEEE Trans Image Process 23(9):4150–4159. doi: 10.1109/TIP.2014.2344433 MathSciNetCrossRefGoogle Scholar
  39. 39.
    Zhang L et al (2014) Representative discovery of structure cues for weakly-supervised image segmentation. IEEE Trans Multimed 16(2):470–479. doi: 10.1109/TMM.2013.2293424 CrossRefGoogle Scholar
  40. 40.
    Zhang L et al (2015) A fine grained image categorization system by Cellet –encoded spatial pyramid modeling. IEEE Trans Ind Electron 62(1). doi: 10.1109/TIE.2014.2327558

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Vehere Interactive Pvt LtdCalcuttaIndia

Personalised recommendations