Skip to main content
Log in

Adaptive delivery of immersive 3D multi-view video over the Internet

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The increase in Internet bandwidth and the developments in 3D video technology have paved the way for the delivery of 3D Multi-View Video (MVV) over the Internet. However, large amounts of data and dynamic network conditions result in frequent network congestion, which may prevent video packets from being delivered on time. As a consequence, the 3D video experience may well be degraded unless content-aware precautionary mechanisms and adaptation methods are deployed. In this work, a novel adaptive MVV streaming method is introduced which addresses the future generation 3D immersive MVV experiences with multi-view displays. When the user experiences network congestion, making it necessary to perform adaptation, the rate-distortion optimum set of views that are pre-determined by the server, are truncated from the delivered MVV streams. In order to maintain high Quality of Experience (QoE) service during the frequent network congestion, the proposed method involves the calculation of low-overhead additional metadata that is delivered to the client. The proposed adaptive 3D MVV streaming solution is tested using the MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH) standard. Both extensive objective and subjective evaluations are presented, showing that the proposed method provides significant quality enhancement under the adverse network conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. 1 QoE is addressed from the perspective of a client whose experiencing in a given situation involves a technical application, service or system.

  2. 2 Best-effort describes network services that do not provide any guarantee that the data is delivered.

  3. 3 Spatial locations in the virtual view that are not visible from either the left or the right view.

  4. 4 Rounding of the pixel position to the closest integer may introduce an incorrect position in the result.

  5. 5 In this paper, the term of intermediate views is used as the captured views that are available at the location between the leftmost and rightmost (see V i e w Nk and V i e w N + k in Fig. 2) in MVV content.

  6. 6 Note that the proposed adaptation method is completely independent from the underling CODEC.

  7. 7 Extensible Markup Language (XML) is a metalanguage that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable.

  8. 8 Codebook and SI examples can be found in https://drive.google.com/open?id=0B_IXpfe4UW-BWFptRTQyZHdheXc https://drive.google.com/open?id=0B_IXpfe4UW-BWFptRTQyZHdheXc.

  9. 9 The typical 5-bit codebook size is 1.5 KBytes, which is sent once at the start of the sequence.

References

  1. Alioscopy - Glasses-free (2016) Alioscopy glasses-free 3D displays. http://www.alioscopy.com/en/3ddisplays.php

  2. Apple Developer (2016) Apple HTTP live streaming. https://developer.apple.com/streaming/

  3. Benzie P, Watson J, Surman P, Rakkolainen I, Hopf K, Urey H, Sainov V, Kopylow C (2007) A survey of 3DTV displays: Techniques and technologies. IEEE Trans Circuits Syst Video Technol 17(11):1647–1658

    Article  Google Scholar 

  4. Bjøtegaard G (2001) Calculation of average PSNR differences between RD-curves (vceg-m33). Tech. Rep. M16090, VCEG Meeting (ITU-T SG16 Q.6) Austin,Texas,USA

  5. Carballeira P, Tech G, Cabrera J, Müler K, Jaureguizar F, Wiegand T, Garcia N (2010) Block based Rate-Distortion analysis for quality improvement of synthesized views. In: 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), 2010, Tampere, pp 1–4

  6. Chakareski J (2013) Adaptive multiview video streaming: challenges and opportunities. IEEE Commun Mag 51(5):94–100

    Article  Google Scholar 

  7. Chambel T, Bove V, Strover S, Viana P, Thomas G (2013) ImmersiveMe ’13: Proceedings of the 2013 ACM International Workshop on Immersive Media Experiences. In: Proceedings of the 2013 ACM International Workshop on Immersive Media Experiences, ACM, Barcelona, Spain, p 433137

  8. Cheng C M, Lin S J, Lai S H (2011) Spatio-Temporally Consistent Novel View Synthesis Algorithm From Video-Plus-Depth Sequences for Autostereoscopic Displays. IEEE Trans Broadcast 57(2):523–532

    Article  Google Scholar 

  9. Cheung G, Velisavljevic V, Ortega A (2011) On dependent bit allocation for multiview image coding with depth-image-based rendering. IEEE Trans Image Process 20(11):3179–3194

    Article  MathSciNet  Google Scholar 

  10. Cheung NM, Tian D, Vetro A, Sun H (2012) On modeling the rendering error in 3D video. In: Image Processing (ICIP), 2012 19th IEEE International Conference on, pp 3021–3024

  11. Christensen E, Curbera F, Meredith G, Weerawarana S (2016) Web services description language (WSDL) 1.1

  12. Cohen B (2003) Incentives build robustness in BitTorrent. In: Workshop on Economics of Peer-to-Peer systems, vol 6, pp 68–72

  13. Dempsey B, Liebeherr J, Weaver A (1996) On Retransmission-based Error Control for Continuous Media Traffic in Packet-switching Networks. Computer Networks and ISDN Systems 28(5):719–736

    Article  Google Scholar 

  14. Detti A, Ricci B, Blefari-Melazzi N (2015) Mobile Peer-to-peer Video Streaming over Information-centric Networks. Comput Netw 81(C):272–288

    Article  Google Scholar 

  15. Dimenco - No-glasses 3D (2016) Dimenco displays. http://www.dimenco.eu/3d-displays/displays/

  16. Domański M, Stankiewicz O, Wegner K, Kurc M, Konieczny J, Siast J, Stankowski J, Ratajczak R, Grajek T (2013) High efficiency 3D video coding using new tools based on view synthesis. IEEE Trans Image Process 22(9):3517–3527

    Article  Google Scholar 

  17. Dufaux F, Pesquet-Popescu B, Cagnazzo M (2013) Emerging technologies for 3D video: creation, coding, transmission and rendering. John Wiley & Sons

  18. Fehn C (2004) Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV. Proc SPIE 5291:93–104

    Article  Google Scholar 

  19. Feldmann I, Mueller M, Zilly F, Tanger R, Mueller K, Smolic A, Kauff P, Wiegand T (2008) HHI test material for 3D video. Tech. Rep. MPEG2008/M15413 ISO/IEC JTC1/SC29/WG11. Archamps, France

    Google Scholar 

  20. GIST Electronics and telecommunications research institute and gwangju institute of science and technology (2016) 3DV Sequences of ETRI DS, Gwangju, Korea, ftp://203.253.128.142/

  21. Gürler C, Bagci K, Tekalp A (2010) Adaptive stereoscopic 3D video streaming. In: Image Processing (ICIP), 2010 17th IEEE International Conference on, Hong Kong, pp 2409–2412

  22. Helle P, Oudin S, Bross B, Marpe D, Bici M, Ugur K, Jung J, Clare G, Wiegand T (2012) Block merging for quadtree-based partitioning in HEVC. IEEE Trans Circuits Syst Video Technol 22(12):1720–1731

    Article  Google Scholar 

  23. HHI Fraunhofer (2016) 3DV Sequences of HHI Fraunhofer heinrich hertz institute, Berlin, Germany, ftp://ftp.hhi.de/hhimpeg3dv

  24. Ho Y S, Lee E K, Lee C (2008) Multiview video test sequence and camera parameters. Tech. Rep. MPEG2008/M15419 ISO/IEC JTC1/SC29/WG11. Archamps, France

    Google Scholar 

  25. Hur J H, Cho S, Lee Y L (2007) Adaptive local illumination change compensation method for H.264/AVC-based multiview video coding. IEEE Trans Circuits Syst Video Technol 17(11):1496–1505

    Article  Google Scholar 

  26. ISO/IEC JTC1/SC29/WG11 (2005) Report of the subjective quality evaluation for MVC call for evidence. Tech. Rep. MPEG2005/N6999, Hong Kong, China

  27. ISO/IEC JTC1/SC29/WG11 (2011) Call for proposals on 3D video coding technology. Tech. Rep. MPEG2011/N12036, Geneva, Switzerland

  28. ISO/IEC JTC1/SC29/WG11 (2015) Call for Evidence on Free-Viewpoint Television: Super-Multiview and Free Navigation. Tech. Rep. MPEG2015/N15733, Geneva, Switzerland

  29. ISO/IEC JTC1/SC29/WG11 (2016) MPEG 3-DV View Synthesis Reference Software. http://wg11.sc29.org/svn/repos/mpeg-4/test/trunk/3d/view.synthesis/

  30. ITU-R Recommendation (2012) ITU-R BT.500-13, Methodology for the subjective assessment of the quality of television pictures

  31. Jacobson V (1988) Congestion avoidance and control. ACM SIGCOMM Computer Communication Review 1:314–329

    Article  Google Scholar 

  32. Jacobson V, Smetters D, Thornton J, Plass M, Briggs N, Braynard R (2009) Networking named content. In: Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies, ACM, New York, NY, USA, CoNEXT ’09, pp 1–12

  33. Kang Y S, Lee E K, Jung J I, Lee J H, Shin I Y (2009) 3D video test sequence and camera parameters. Tech. Rep. MPEG2009/M16949, ISO/IEC JTC1/SC29/WG11. Sian, China

    Google Scholar 

  34. Kanungo T, Mount D, Netanyahu N, Piatko C, Silverman R, Wu A (2002) An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892

    Article  MATH  Google Scholar 

  35. Kim WS, Ortega A, Lai P, Tian D, Gomila C (2009) Depth map distortion analysis for view rendering and depth coding. In: Image Processing (ICIP), 16th IEEE International Conference on, pp 721–724

  36. Kondoz A (2004) Digital Speech: coding for low bitrate communication systems. Wiley Online Library

  37. Kondoz A, Dagiuklas T (2014) 3D Future Internet Media. Springer

  38. Köppel M, Ndjiki-Nya P, Doshkov D, Lakshman H, Merkle P, Müller K, Wiegand T (2010) Temporally consistent handling of disocclusions with texture synthesis for depth-image-based rendering. In: Image Processing (ICIP), 2010 17th IEEE International Conference on, pp 1809–1812

  39. Lederer S, Müller C, Timmerer C (2012) Dynamic adaptive streaming over HTTP dataset. In: Proceedings of the 3rd Multimedia Systems Conference, ACM, New York, NY, USA, MMSys ’12, pp 89–94

  40. Lewandowski F, Paluszkiewicz M, Grajek T, Wegner K (2012) Subjective quality assessment methodology for 3D video compression technology. In: Signals and Electronic Systems (ICSES), 2012 International Conference on, pp 1–5

  41. Lightstone M, Mitra S (1997) Quadtree optimization for image and video coding. Journal of VLSI signal processing systems for signal, image and video technology 17 (2-3):215–224

    Article  Google Scholar 

  42. Matusik W, Pfister H (2004) 3D TV: A scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Trans Graph 23 (3):814–824

    Article  Google Scholar 

  43. Miller K, Quacchio E, Gennari G, Wolisz A (2012) Adaptation algorithm for adaptive streaming over HTTP. 2012 19th International Packet Video Workshop (PV):173–178

  44. Müller C, Lederer S, Timmerer C (2012) An evaluation of dynamic adaptive streaming over HTTP in vehicular environments. In: Proceedings of the 4th Workshop on Mobile Video, ACM, New York, NY, USA, MoVid ’12, pp 37–42

  45. Müller K, Schwarz H, Marpe D, Bartnik C, Bosse S, Brust H, Hinz T, Lakshman H, Merkle P, Rhee F, Tech G, Winken M, Wiegand T (2013) 3D high-efficiency video coding for multi-view video and depth data. IEEE Trans Image Process 22(9):3366–3378

    Article  MathSciNet  Google Scholar 

  46. Nagoya University (2016) 3DV Sequences of Nagoya University, Japan. http://www.tanimoto.nuee.nagoya-u.ac.jp/MPEG-FTVProject.html

  47. Oh KJ, Yea S, Ho YS (2009) Hole filling method using depth based in-painting for view synthesis in free viewpoint television and 3-D video. In: Picture Coding Symposium, 2009. PCS 2009, Chicago, IL, pp 1–4

  48. Onural L (2007) Television in 3D: What are the prospects?. Proc IEEE 95 (6):1143–1145

    Article  Google Scholar 

  49. Ozcinar C, Ekmekcioglu E, Kondoz A (2013) Dynamic adaptive 3D multi-view video streaming over the Internet. In: Proceedings of the 2013 ACM International Workshop on Immersive Media Experiences, ACM, Barcelona, Spain, ImmersiveMe ’13, pp 51–56

  50. Ozcinar C, Ekmekcioglu E, Kondoz A (2014) Adaptive 3D multi-view video streaming over P2P networks. In: Image Processing (ICIP), 2014 IEEE International Conference on, Paris, pp 2462–2466

  51. Oztas B, Pourazad M, Nasiopoulos P, Sodagar I, Leung V (2014) A rate adaptation approach for streaming multiview plus depth content. In: Computing, Networking and Communications (ICNC), 2014 International Conference on, Honolulu, HI, pp 1006–1010

  52. P.910 ITU-T Recommendation (1999) Subjective video quality assessment methods for multimedia applications

  53. Pourebrahimi B, Bertels K, Vassiliadis S (2005) A survey of peer-to-peer networks. In: Proceedings of the 16th Annual Workshop on Circuits, Systems and Signal Processing

  54. Pulipaka A, Seeling P, Reisslein M, Karam L (2013) Traffic and Statistical Multiplexing Characterization of 3-D Video Representation Formats. IEEE Trans Broadcast 59(2):382–389

    Article  Google Scholar 

  55. Rizzo L (1997) Dummynet: A simple approach to the evaluation of network protocols. ACM SIGCOMM Computer Communication Review 27(1):31–41

    Article  Google Scholar 

  56. Savas S, Gurler C, Tekalp A (2012) Evaluation of adaptation methods for multi-view video. In: Image Processing (ICIP), 2012 19th IEEE International Conference on, Orlando, FL, pp 2273–2276

  57. Savas S, Gurler C, Tekalp A, Ekmekcioglu E, Worrall S, Kondoz A (2012) Adaptive streaming of multi-view video over P2P networks. Signal Process Image Commun 27(5):522 – 531

    Article  Google Scholar 

  58. Seeling P, Reisslein M (2005) The rate variability-distortion (VD) curve of encoded video and its impact on statistical multiplexing. IEEE Trans Broadcast 51 (4):473–492

    Article  Google Scholar 

  59. Seema A, Schwoebel L, Shah T, Morgan J, Reisslein M (2015) WVSNP-DASH Name-Based Segmented Video Streaming. IEEE Trans Broadcast 61 (3):346–355

    Article  Google Scholar 

  60. Smolic A, Mueller K, Stefanoski N, Ostermann J, Gotchev A, Akar G, Triantafyllidis G, Koz A (2007) Coding algorithms for 3DTV - a survey. IEEE Trans Circuits Syst Video Technol 17(11):1606–1621

    Article  Google Scholar 

  61. Sodagar I (2011) The MPEG-DASH Standard for Multimedia Streaming Over the Internet. Multi Media IEEE 18(4):62–67

    Article  Google Scholar 

  62. Sripanidkulchai K, Maggs B, Zhang H (2004) An Analysis of Live Streaming Workloads on the Internet. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, ACM, New York, NY, USA, IMC ’04, pp 41–54

  63. Stockhammer T (2011) Dynamic Adaptive Streaming over HTTP –: Standards and Design Principles. In: Proceedings of the Second Annual ACM Conference on Multimedia Systems, ACM, New York, NY, USA, MMSys ’11, pp 133–144

  64. Sugiyama Y (1986) An algorithm for solving discrete-time Wiener-Hopf equations based upon Euclid’s algorithm. IEEE Trans Inf Theory 32(3):394–409

    Article  MathSciNet  MATH  Google Scholar 

  65. Sullivan G, Baker R (1994) Efficient quadtree coding of images and video. IEEE Trans Image Process 3(3):327–331

    Article  Google Scholar 

  66. Sullivan G, Wiegand T (1998) Rate-distortion optimization for video compression. IEEE Signal Process Mag 15(6):74–90

    Article  Google Scholar 

  67. Sullivan G, Ohm J, Han W J, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22 (12):1649–1668

    Article  Google Scholar 

  68. Sullivan G, Boyce J, Chen Y, Ohm J R, Segall C, Vetro A (2013) Standardized Extensions of High Efficiency Video Coding (HEVC). IEEE J Sel Top Sign Proces 7(6):1001–1016

    Article  Google Scholar 

  69. Sun W, Cheung G, Chou P, Florencio D, Zhang C, Au O (2013) Rate-distortion optimized 3D reconstruction from noise-corrupted multiview depth videos. In: Multimedia and Expo (ICME), 2013 IEEE International Conference on, San Jose, CA, pp 1–6

  70. Tanimoto M (2009) Overview of FTV (free-viewpoint television). In: Multimedia and Expo, 2009. ICME 2009. IEEE International Conference on New York, NY, pp 1552–1553

  71. Tanimoto M, Fujii T, Suzuki K, Fukushima N, Mori Y (2008) Reference softwares for depth estimation and view synthesis. Tech. Rep. MPEG2008/M15377, ISO/IEC JTC1/SC29/WG11, Archamps

  72. Tech G, Schwarz H, Müller K, Wiegand T (2012) 3D video coding using the synthesized view distortion change. In: Picture Coding Symposium (PCS), 2012, Krakow, pp 25–28

  73. Thang T, Ho Q D, Kang J, Pham A (2012) Adaptive streaming of audiovisual content using MPEG DASH. IEEE Trans Consum Electron 58(1):78–85

    Article  Google Scholar 

  74. The official Microsoft IIS site (2016) Microsoft Smooth-Streaming. http://www.iis.net/downloads/microsoft/smooth-streaming

  75. Vetro A, Sodagar I (2011) Industry and Standards The MPEG-DASH Standard for Multimedia Streaming Over the Internet. IEEE MultiMedia 18(4):62–67

    Article  Google Scholar 

  76. Vetro A, Tourapis A, Müller K, Tao C (2011) 3D-TV content storage and transmission. IEEE Trans Broadcast 57(2):384–394

    Article  Google Scholar 

  77. Vetro A, Wiegand T, Sullivan G (2011) Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC standard. Proc IEEE 99(4):626–642

    Article  Google Scholar 

  78. Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  79. Wegner K, Stankiewicz O, Klimaszewski K, Domański M (2010) Comparison of multiview compresion performance using MPEG-4 MVC and prospective HVC technology. Tech. Rep. MPEG M17913 ISO/IEC JTC1/SC29/WG11. Geneve, Switzerland

    Google Scholar 

  80. Wiegand T, Sullivan G, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13 (7):560–576

    Article  Google Scholar 

  81. Yaning L, Geurts J, Point JC, Lederer S, Rainer B, Müller C, Timmerer C, Hellwagner H (2013) Dynamic adaptive streaming over CCN: A caching and overhead analysis. In: Communications (ICC), 2013 IEEE International Conference on , pp 3629–3633

  82. Zhang C, Yin Z, Florencio D (2009) Improving depth perception with motion parallax and its application in teleconferencing. In: Multimedia Signal Processing, MMSP ’09. IEEE International Workshop on, Rio De Janeiro, pp 1–6

  83. Zhang Q, Tian L, Huang L, Wang X, Zhu H (2014) Rendering distortion estimation model for 3D high efficiency depth coding. Math Probl Eng 2014(940737):7

    Google Scholar 

  84. Zhao Y, Yu L (2010) A perceptual metric for evaluating quality of synthesized sequences in 3DV system. In: Proceedings of SPIE Vol, vol 7744, pp 77,440X–1

Download references

Acknowledgments

This work was supported by the ROMEO project (grant number: 287896), which was funded by the EC FP7 ICT collaborative research programme. This paper is an extended version of the original paper [49] which appeared in the Proceedings of the 2013 ACM International Workshop on Immersive Media Experiences [7]. Special thanks to the anonymous reviewers and program chairs in the workshop and the journal for their constructive comments and suggestions that assisted in enhancing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cagri Ozcinar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozcinar, C., Ekmekcioglu, E., Ćalić, J. et al. Adaptive delivery of immersive 3D multi-view video over the Internet. Multimed Tools Appl 75, 12431–12461 (2016). https://doi.org/10.1007/s11042-016-3475-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3475-2

Keywords

Navigation