Multimedia Tools and Applications

, Volume 76, Issue 8, pp 10465–10479 | Cite as

Content-aware disparity adjustment for different stereo displays

  • Weiqing Yan
  • Chunping Hou
  • Baoliang Wang
  • Laihua Wang


In this paper, we present an effective disparity mapping method for binocular stereoscopic image. It is inspired by the observation that its displayed depth would change, when a stereoscopic image is displayed on different size screens. The phenomenon may bring an uncomfortable experience for viewers. To make a comfortable stereoscopic image for viewers, moreover to adapt a stereoscopic image to a target display screen, we propose a content-aware disparity adjustment method. Firstly, the disparity mapping is established to control and retarget the depth of a stereoscopic scene. Then, the relationship between the disparity editing and image content editing is established to guide the proposed warping model. At last, to implement the disparity mapping operator, we propose a content-aware stereoscopic mesh warping model, which can simultaneously avoid the salient region distortion and adjust disparity to a target range by establishing the relationship. Experimental results show that the proposed method can effectively adjust disparity of stereoscopic image, which not only avoids the salient region distortion and adjusts disparity to a target range.


Stereoscopic image Disparity mapping Content-aware Salient region 3D image warping 



This work is supported by the National Natural Science Foundation of China under Grants 61471262, by Natural Science Foundation key international (regional) cooperation research projects 61520106002, and by Ph.D. Programs Foundation of Ministry of Education of China under Grants 20130032110010, by China Scholarship Council (CSC).


  1. 1.
    Basha T, Moses Y, Avidan S (2013) Stereo seam carving a geometrically consistent approach. IEEE Trans Pattern Anal Mach Intell 35(10):2513–2525CrossRefGoogle Scholar
  2. 2.
    Chan HM, Chung ACS, Yu SCH, Wells WM (2004) III 2D–3D vascular registration between digital subtraction angiographic (DSA) and magnetic resonance angiographic (MRA) images. IEEE Biomed Imaging Nano Macro 1:708–711Google Scholar
  3. 3.
    Chang CH, Liang CK, Chuang YY (2011) Content-aware display adaptation and interactive editing for stereoscopic images. IEEE Trans Multimedia 13(4):589–601CrossRefGoogle Scholar
  4. 4.
    Feldmann I, Scheer O, Kauff P (2003) Nonlinear depth scaling for immersive video applications. WIAMIS, LondonCrossRefGoogle Scholar
  5. 5.
    Fröhlich B, Barrass S, Zehner B, Plate J, Gobel M (1999) Exploring geo-scientific data in virtual environments. Proc IEEE Vis 99:169–173Google Scholar
  6. 6.
    Getty DJ, D’Orsi CJ, Pickett RM (2008) Stereoscopic digital mammography: Improved accuracy of lesion detection in breast cancer screening. Lect Notes Comput Sci 5116:74–79CrossRefGoogle Scholar
  7. 7.
    Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal Mach Intell 34(10):1915–1926CrossRefGoogle Scholar
  8. 8.
    Halbfinger DM (2008) [Retrieved March 13]; with theaters barely digital, studios push 3-D. New York Times, New YorkGoogle Scholar
  9. 9.
    Heckbert PS (1989) Fundamentals of texture mapping and image warping. Master’s thesis, University of California, BerkeleyGoogle Scholar
  10. 10.
    Hirschmuller H (2008) Stereo processing by semiglobal matching and mutual information. IEEE Trans Pattern Anal Mach Intell 30(2):328–341CrossRefGoogle Scholar
  11. 11.
    Hoffman DM, Girshick AR, Akeley K, Banks MS (2008) Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J Vis 8(3):33, 1–30Google Scholar
  12. 12.
    Holliman N (2002) 3D display systems. Department of Computer Science, University Durham, Durham, Technical Report Google Scholar
  13. 13.
    Jiang GY, Zhou JM, Yu M, Zhang Y, Shao F, Peng ZJ (2014) Binocular vision based objective quality assessment method for stereoscopic images. Multimedia Tools Appl. doi: 10.1007/s11042-014-2051-x Google Scholar
  14. 14.
    Jung C, Wang S (2014) Visual comfort assessment in stereoscopic 3D images using salient object disparity. Electron Lett 51(6):482–484CrossRefGoogle Scholar
  15. 15.
    Kang K, Cao Y, Zhang J, Wang ZF (2014) Salient object detection and classification for stereoscopic images. Multimedia Tools Appl. doi: 10.1007/s11042-014-2142-8 Google Scholar
  16. 16.
    Lang M, Hornung A, Wang O, Poulakos S, Smolic A, Gross M (2010) Nonlinear disparity mapping for stereoscopic 3d. ACM Trans Graph 29(4):1–10CrossRefGoogle Scholar
  17. 17.
    Lin H, Guan S, Lee C, Ouhyoung M (2011) Stereoscopic 3D experience optimization using cropping and warping. In: ACM SIGGRAPH Asia Sketches. Hong Kong. doi: 10.1145/2077378.2077428
  18. 18.
    Liu F, Gleicher M, Jin H, Agarwala A (2009) Content-preserving warps for 3d video stabilization. ACM Trans Graph 28(3):36–44Google Scholar
  19. 19.
    Liu F, Niu Y, Jin H (2013) Casual stereoscopic photo authoring. IEEE Trans Multimedia 15(1):129–140CrossRefGoogle Scholar
  20. 20.
    Luo SJ, Shen I, Chen BY, Cheng WH, Chuang YY (2012) Perspective-aware warping for seamless stereoscopic image cloning. ACM Trans Graph 31(6):182–190Google Scholar
  21. 21.
    Shibata, T., Kim, J., Hoffman, D.M. & Banks, M.S. (2011) The zone of comfort: Predicting visual discomfort with stereo displays. J Vis 11(8):11, 1–29Google Scholar
  22. 22.
    Smolic A, Kauff P, Knorr S, Hornung A (2011) Kunter: three-dimensional video postproduction and processing. Proc IEEE 99(4):607–625CrossRefGoogle Scholar
  23. 23.
    Wang L, Jin H, Yang R and Gong M (2008) Stereoscopic in painting: joint color and depth completion from stereo images. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR). pp 1–8Google Scholar
  24. 24.
    Wang YS, Tai CL, Sorkine O, Lee TY (2008) Optimized scale-and-stretch for image resizing. ACM Trans Graph 27(5):1–8CrossRefGoogle Scholar
  25. 25.
    Yoo JW, Yea S, Park IK (2013) Content-driven retargeting of stereoscopic images. IEEE Signal Process Lett 20(5):519–522CrossRefGoogle Scholar
  26. 26.
    Zitnick CL, Kang SB, Uyttendaele M, Winder S, Szeliski R (2004) High-quality video view interpolation using a layered representation. ACM Trans Graph 23(3):600–608CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Electronic Information EngineeringTianjin UniversityTianjinChina
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations