Advertisement

Multimedia Tools and Applications

, Volume 76, Issue 8, pp 10427–10441 | Cite as

Exploiting contrast cues for salient region detection

Article
  • 218 Downloads

Abstract

Visual saliency detection is an important cue used in human visual system, which can offer efficient solutions for both biological and artificial vision systems. Although there are many saliency detection models that can achieve good results on public datasets, the accuracy and reliability of salient object detection models still remains a challenge. For this reason, a novel effective salient region detection model is presented in this paper. Based on the principle that a combination of global statistics and surrounding contrast saliency operators can yield even better results than just using either alone, we use a histogram-based contrast method to calculate the global saliency values in an opponent color space. At the same time, we partition the input image into a set of regions, and the regional saliency is detected by considering the color isolation with spatial information and textural distinctness simultaneously. The final saliency is obtained based on a weighted fusion of the two saliency results. The experimental results from three widely used databases validate the efficacy of the proposed method in comparison with fourteen state-of-the-art existing methods.

Keywords

Visual attention Salient region detection Contrast measure Saliency map 

References

  1. 1.
    Achanta R, Estrada F, Wils P, Susstrunk S (2008) Salient region detection and segmentation. In: The 6th International conference on computer vision systems, p 66–75Google Scholar
  2. 2.
    Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. In: IEEE conference on computer vision and pattern recognition, p 1597–1604Google Scholar
  3. 3.
    Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282CrossRefGoogle Scholar
  4. 4.
    Borji A, Itti L (2012) Exploiting local and global patch rarities for saliency detection. In: IEEE conference on computer vision and pattern recognition, p 478–485Google Scholar
  5. 5.
    Bruce ND, Tsotsos JK (2009) Saliency, attention, and visual search: an information theoretic approach. J Vis 9(3):5CrossRefGoogle Scholar
  6. 6.
    Cheng M, Mitra NJ, Huang X, Torr PH, Hu S (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582CrossRefGoogle Scholar
  7. 7.
    Einhauser W, Konig P (2003) Does luminance-contrast contribute to a saliency map for overt visual attention? Eur J Neurosci 17(5):1089–1097CrossRefGoogle Scholar
  8. 8.
    Frintrop S, Werner T, Martín García G (2015) Traditional saliency reloaded: a good old model in new shape. In: IEEE conference on computer vision and pattern recognition, p 82–90Google Scholar
  9. 9.
    Goferman S, Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal Mach Intell 34(10):1915–1926CrossRefGoogle Scholar
  10. 10.
    Hadizadeh H, Bajic IV (2014) Saliency-aware video compression. IEEE Trans Image Process 23(1):19–33MathSciNetCrossRefGoogle Scholar
  11. 11.
    Harel J, Koch C, Perona PI (2007) Graph-based visual saliency. In: Advances in neural information processing systems, p 545–552Google Scholar
  12. 12.
    Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. In: IEEE conference on computer vision and pattern recognition, p 1-8Google Scholar
  13. 13.
    Hurvich LM, Jameson D (1957) An opponent-process theory of color vision. Psychol Rev 64(6):384–404CrossRefGoogle Scholar
  14. 14.
    Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 11:1254–1259CrossRefGoogle Scholar
  15. 15.
    Jiang H, Wang J, Yuan Z, Liu T, Zheng N, Li S (2011) Automatic salient object segmentation based on context and shape prior. In: BMVC, p 1–12Google Scholar
  16. 16.
    Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2013) Salient object detection: a discriminative regional feature integration approach. In: IEEE conference on computer vision and pattern recognition, p 2083-2090Google Scholar
  17. 17.
    Kang D, Lee S, Lee Y-B (2011) Human visual attention with context-specific top-down saliency. In: IEEE International Conference on Robotics and Biomimetics, p 2055–2060Google Scholar
  18. 18.
    Li J, Levine MD, An X, Xu X, He H (2013) Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans Pattern Anal Mach Intell 35(4):996–1010CrossRefGoogle Scholar
  19. 19.
    Li Q, Zhou Y, Yang J (2011) Saliency based image segmentation. In: International Conference on Multimedia Technology, p 5068–5071Google Scholar
  20. 20.
    Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H-Y (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367CrossRefGoogle Scholar
  21. 21.
    Luo W, Li H, Liu G, Ngan KN (2012) Global salient information maximization for saliency detection. Signal Process Image Commun 27(3):238–248CrossRefGoogle Scholar
  22. 22.
    Ma YF, Zhang HJ (2003) Contrast-based image attention analysis by using fuzzy growing. In: Proceedings of the eleventh ACM international conference on Multimedia, p 374–381Google Scholar
  23. 23.
    Margolin R, Tal A, Zelnik-Manor L (2013) What makes a patch distinct? In: IEEE conference on computer vision and pattern recognition, p 1139–1146Google Scholar
  24. 24.
    Rahtu E, Kannala J, Salo M, Heikkilä J (2010) Segmenting salient objects from images and videos. In: Proceedings of the European conference on computer vision, p 366–379Google Scholar
  25. 25.
    Reynolds JH, Desimone R (2003) Interacting roles of attention and visual salience in V4. Neuron 37(5):853–863CrossRefGoogle Scholar
  26. 26.
    Sharma G, Jurie F, Schmid C (2012) Discriminative spatial saliency for image classification. In: IEEE conference on computer vision and pattern recognition, p 3506–3513Google Scholar
  27. 27.
    Tong N, Lu H, Ruan X, Yang M-H (2015) Salient object detection via bootstrap learning. In: IEEE conference on computer vision and pattern recognition, p 1884–1892Google Scholar
  28. 28.
    Tong N, Lu H, Zhang Y, Ruan X (2014) Salient object detection via global and local cues. Pattern Recogn 48(10):3258–3267CrossRefGoogle Scholar
  29. 29.
    Wan SH, Jin PG, Yue LH (2009) An approach for image retrieval based on visual saliency. In: International conference on image analysis and signal processing, p 172–175Google Scholar
  30. 30.
    Xu L, Lu C, Xu Y, Jia J (2011) Image smoothing via L0 gradient minimization. ACM Trans Graph 30(6)Google Scholar
  31. 31.
    Yang J, Yang M-H (2012) Top-down visual saliency via joint crf and dictionary learning. In: International conference on image analysis and signal processing, p 2296–2303Google Scholar
  32. 32.
    Ye T, Zhang D, Gao K, Jin G, Zhang Y, Yuan Q (2014) Salient region detection: Integrate both global and local cues. In: IEEE International Conference on Multimedia and Expo, p 1–6Google Scholar
  33. 33.
    Yeh H-H, Liu K-H, Chen C-S (2014) Salient object detection via local saliency estimation and global homogeneity refinement. Pattern Recogn 47(4):1740–1750CrossRefGoogle Scholar
  34. 34.
    Yildirim G, Süsstrunk S (2015) FASA: fast, accurate, and size-aware salient object detection. In: Asian Conference on Computer Vision, p 514–528Google Scholar
  35. 35.
    Zhai Y, Shah M (2006) Visual attention detection in video sequences using spatiotemporal cues. In: Proceedings of the 14th annual ACM international conference on Multimedia, p 815–824Google Scholar
  36. 36.
    Zhang L, Tong MH, Marks TK, Shan H, Cottrell GW (2008) SUN: a Bayesian framework for saliency using natural statistics. J Vis 8(7):32CrossRefGoogle Scholar
  37. 37.
    Zhang W, Xiong Q, Shi W, Chen S (2015) Region saliency detection via multi-feature on absorbing Markov chain. Vis Comput:1–13Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Mechanical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.School of Electrical and Electronic EngineeringChangzhou College of Information TechnologyChangzhouChina
  3. 3.School of AutomationSoutheast UniversityNanjingChina

Personalised recommendations