Multimedia Tools and Applications

, Volume 76, Issue 5, pp 7235–7249 | Cite as

Blind single image super resolution with low computational complexity

  • Won-Hee Kim
  • Jong-Seok Lee


This paper proposes a single image super resolution algorithm with the aim of satisfying three desirable characteristics, namely, high quality of the produced images, adaptability to image contents and unknown blurring conditions used to generate given input images, and low computational complexity. After the given input image is up-scaled using a conventional reconstruction operator, the missing high frequency components estimated from lower resolution versions of the input image are added for improved quality and, moreover, the amount of the high frequency components to be added is adaptively determined. No computationally intensive operation is involved in the whole process, which makes the method computationally cheap. Experimental results show that the proposed method yields good subjective and objective image quality consistently across different blurring conditions and contents, and operates fast in comparison to existing state-of-the-art algorithms. In addition, it is also demonstrated that the proposed method can be used in combination with the existing algorithms in order to improve further their performance in terms of image quality.


Single image super resolution Adaptive weighting Image quality Low computational complexity 



This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the “IT Consilience Creative Program” (IITP-2015-R0346-15-1008) supervised by the IITP (Institute for Information & Communications Technology Promotion).


  1. 1.
    Allebach J, Wong PW (1996) Edge-directed interpolation. Proc Int Conf Image Proc 3:707–710. doi: 10.1109/ICIP.1996.560768 CrossRefGoogle Scholar
  2. 2.
    Asuni N, Giachetti A (2008) Accuracy improvements and artifacts removal in edge based image interpolation. Proc Int Conf Comput Vis Theory Appl 1:58–65Google Scholar
  3. 3.
    Chang J, Yoo DS, Park JH, Park SH, Kang MG (2011) Edge directional interpolation for image upscaling with temporarily interpolated pixels. Electron Lett 47(21):1176–1178. doi: 10.1049/el.2011.2496 CrossRefGoogle Scholar
  4. 4.
    Dong W, Zhang L, Lukac R, Shi G (2013) Sparse representation based image interpolation with nonlocal autoregressive modeling. IEEE Trans Image Process 22(4):1382–1394. doi: 10.1109/TIP.2012.2231086 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630. doi: 10.1109/TIP.2012.2235847 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dong W, Zhang L, Shi G, Wu X (2011) Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans Image Process 20(7):1838–1857. doi: 10.1109/TIP.2011.2108306 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Giachetti A, Asuni N (2011) Real-time artifact-free image upscaling. IEEE Trans Image Process 20(10):2760–2768. doi: 10.1109/TIP.2011.2136352 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB. Pearson Prentice Hall, New JerseyGoogle Scholar
  9. 9.
    Hou HS, Andrews HC (1978) Cubic splines for image interpolation and digital filtering. IEEE Trans Acoust 26(6):508–517. doi: 10.1109/TASSP.1978.1163154 CrossRefzbMATHGoogle Scholar
  10. 10.
    Keys RG (1981) Cubic convolution interpolation for digital image processing. IEEE Trans Acoust 29(6):1153–1160. doi: 10.1109/TASSP.1981.1163711 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kim W-H, Lee J-S (2015) Framework for fair objective performance evaluation of single-image super-resolution algorithms. Electron Lett 51(1):42–44. doi: 10.1049/el.2014.2784 CrossRefGoogle Scholar
  12. 12.
    Lee J-H, Kim J-O, Han J-W, Choi K-S, Ko S-J (2010) Edge-oriented two-step interpolation based on training set. IEEE Trans Consum Electron 65(3):1848–1855. doi: 10.1109/TCE.2010.5606336 CrossRefGoogle Scholar
  13. 13.
    Li X, Orchard MT (2001) New edge-directed interpolation. IEEE Trans Image Process 10(10):1521–1527. doi: 10.1109/83.951537 CrossRefGoogle Scholar
  14. 14.
    Mallat S, Yu G (2010) Super-resolution with sparse mixing estimators. IEEE Trans Image Process 19(11):2889–2900. doi: 10.1109/TIP.2010.2049927 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Park SC, Park MK, Kang MG (2003) Super-resolution image reconstruction: a technical overview. IEEE Signal Process Mag 20(3):21–36. doi: 10.1109/MSP.2003.1203207 CrossRefGoogle Scholar
  16. 16.
    Pratt WK (1978) Digital image processing. Wiley, New YorkzbMATHGoogle Scholar
  17. 17.
    Tam W-S, Kok C-W, Siu W-C (2010) Modified edge-directed interpolation for images. J Electron Imaging 19(1):013011. doi: 10.1117/1.3358372 CrossRefGoogle Scholar
  18. 18.
    Tian J, Ma K-K (2011) A survey on super-resolution imaging. SIViP 5(3):329–342. doi: 10.1007/s11760-010-0204-6 CrossRefGoogle Scholar
  19. 19.
    Unser M, Aldroubi A, Eden M (1991) Fast B-spline transforms for continuous image representation and interpolation. IEEE Trans Pattern Anal Mach Intell 13(3):277–285. doi: 10.1109/34.75515 CrossRefGoogle Scholar
  20. 20.
    Van Ouwerkerk JD (2006) Image super-resolution survey. Image Vis Comput 24(10):1039–1052. doi: 10.1016/j.imavis.2006.02.026 CrossRefGoogle Scholar
  21. 21.
    Vedadi F, Shirani S (2014) A MAP-based image interpolation method via Viterbi decoding of Markov chains of interpolation functions. IEEE Trans Image Process 23(1):424–438. doi: 10.1109/TIP.2013.2290586 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Vrcej B, Vaidyanathan PP (2001) Efficient implementation of all-digital interpolation. IEEE Trans Image Process 10(11):1639–1646. doi: 10.1109/83.967392 CrossRefzbMATHGoogle Scholar
  23. 23.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. doi: 10.1109/TIP.2003.819861 CrossRefGoogle Scholar
  24. 24.
    Wei Z, Ma K-K (2013) Contrast-guided image interpolation. IEEE Trans Image Process 22(11):4271–4285. doi: 10.1109/TIP.2013.2271849 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wong C-S, Siu W-C (2010) Further improved edge-directed interpolation and fast EDI for SDTV to HDTV conversion. Proc Eur Signal Proc Conf 2010:309–313Google Scholar
  26. 26.
    Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873. doi: 10.1109/TIP.2010.2050625 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhang X, Ma S, Zhang Y, Zhang L, Gao W (2009) Nonlocal edge-directed interpolation. Proc IEEE Pac Rim Conf Multimedia 2009:1197–1207. doi: 10.1007/978-3-642-10467-1_121 Google Scholar
  28. 28.
    Zhang X, Wu X (2008) Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Trans Image Process 17(6):887–896. doi: 10.1109/TIP.2008.924279 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zhang L, Xiaolin W (2006) An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans Image Process 15(8):2226–2238. doi: 10.1109/TIP.2006.877407 CrossRefGoogle Scholar
  30. 30.
    Zhou D, Shen X, Dong W (2012) Image zooming using directional cubic convolution interpolation. IET Image Process 6(6):627–634. doi: 10.1049/iet-ipr.2011.0534 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhou F, Yang W, Liao Q (2012) Single image super-resolution using incoherent sub-dictionaries learning. IEEE Trans Consum Electron 58(3):891–897. doi: 10.1109/TCE.2012.6311333 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Yonsei Institute of Convergence TechnologyYonsei UniversityIncheonSouth Korea
  2. 2.School of Integrated Technology & Yonsei Institute of Convergence TechnologyYonsei UniversityIncheonSouth Korea

Personalised recommendations