Multimedia Tools and Applications

, Volume 76, Issue 8, pp 10677–10700 | Cite as

Facebook: a new tool for collecting health data?

  • Maria Claudia Buzzi
  • Marina Buzzi
  • Daniele Franchi
  • Davide Gazzè
  • Giorgio Iervasi
  • Andrea Marchetti
  • Alessandro Pingitore
  • Maurizio Tesconi


This study investigates the use of social networks as a scientific tool for gathering medical data from young subjects while promoting healthier habits. Our first hypothesis is that social networks can facilitate epidemiological studies, reducing time and cost. The second question is whether social networks can enable the collection of data from young and healthy subjects who are otherwise beyond the reach of conventional social health polls. A Facebook application was created to collect data concerning adherence to the Mediterranean diet, considering the significant risk of cardiovascular and neurological degenerative diseases in subjects with poor adherence to a healthy diet. More than 1400 users were recruited in a short time without any promotional action. Collected data indicate that adherence to the Mediterranean diet is in general greater in older users vs young (p <0.01) and Italian vs Other Countries (mainly participants from the US) (p <0.03), while no statistical differences were found concerning gender. Results show that the proposed approach offers advantages in terms of reduced cost, faster data gathering and processing, and improved efficiency compared to a form-based epidemiology campaign. However, the initial network may influence the sample constitution in age and geographical location, especially if the spread does not become viral and autonomous. Based on the case study, we provide designers of Facebook apps with some simple guideline suggestions aimed at maximizing the heterogeneity of the sample, in order to collect significant data. The proposed scenario, suitable for collecting health data, can easily be extended to other fields.


Social networks Facebook Mediterranean diet Health e-health 


  1. 1.
    Amerson R (2011) Facebook: A tool for nursing education research. J Nurs Educ 50(7):414–416. doi: 10.3928/01484834-20110331-01 CrossRefGoogle Scholar
  2. 2.
    Armstrong AW, Harskamp CT, Cheeney S, Schupp CW (2012) Crowdsourcing for research data collection in rosacea. Dermatology Online Journal 18(3):15. Google Scholar
  3. 3.
    Armstrong AW, Wu J, Harskamp CT, Cheeney S, Schupp CW (2013) Crowdsourcing for data collection: a pilot study comparing patient-reported experiences and clinical trial data for the treatment of seborrheic dermatitis. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI) 19(1):55–7. doi: 10.1111/j.1600-0846.2012.00667.x. CrossRefGoogle Scholar
  4. 4.
    Arnrich B, Mayora O, Bardram J, Tröster G (2009) Pervasive healthcare. Methods Inf Med. doi: 10.3414/me09-02-0044 Google Scholar
  5. 5.
    Barabsi AL (2007) Network medicine from obesity to the diseasome. N Engl J Med 357(4):404–407. doi: 10.1056/NEJMe078114. PMID: 17652657CrossRefGoogle Scholar
  6. 6.
    Behrens G, Fischer B, Kohler S, Park Y, Hollenbeck A, Leitzmann M (2013) Healthy lifestyle behaviors and decreased risk of mortality in a large prospective study of u.s. women and men. Eur J Epidemiol 28(5):361–372. doi: 10.1007/s10654-013-9796-9 CrossRefGoogle Scholar
  7. 7.
    Berkman LF, Syme SL (1979) Social networks, host resistance, and mortality: a nine-year follow-up study of alameda county residents. Am J Epidemiol 109(2):186–204. CrossRefGoogle Scholar
  8. 8.
    Bhaskar P, Buzzi M, Geraci F, Pellegrini M (2015) From literature to knowledge: Exploiting pubmed to answer biomedical questions in natural language. In: Renda ME, Bursa M, Holzinger A, Khuri S (eds) Information Technology in Bio- and Medical Informatics, Lecture Notes in Computer Science, vol 9267. Springer International Publishing, pp 3–15. Lecture Notes in Computer Science. doi: 10.1007/978-3-319-22741-2_1
  9. 9.
    van den Brandt PA (2011) The impact of a mediterranean diet and healthy lifestyle on premature mortality in men and women. Am J Clin Nutr 94(3):913–920. doi: 10.3945/ajcn.110.008250 CrossRefGoogle Scholar
  10. 10.
    Celi LA, Zimolzak AJ, Stone DJ (2014) Dynamic clinical data mining: Search engine-based decision support. JMIR Medical Informatics 2(1):e13. doi: 10.2196/medinform.3110 CrossRefGoogle Scholar
  11. 11.
    Chainani-Wu N, Weidner G, Purnell DM, Frenda S, Merritt-Worden T, Pischke C, Campo R, Kemp C, Kersh ES, Ornish D (2011) Changes in emerging cardiac biomarkers after an intensive lifestyle intervention. Am J Cardiol 108 (4):498–507. doi: 10.1016/j.amjcard.2011.03.077 CrossRefGoogle Scholar
  12. 12.
    Chou WYS, Beckjord EB, Moser RP, Hesse BW (2009) Social media use in the united states: Implications for health communication. J Med Internet Res 11(4):e48. doi: 10.2196/jmir.1249 CrossRefGoogle Scholar
  13. 13.
    Christakis NA (2004) Social networks and collateral health effects. BMJ 329 (7459):184–185. doi: 10.1136/bmj.329.7459.184 CrossRefGoogle Scholar
  14. 14.
    Darnton-Hill I, Nishida C, James W (2004) A life course approach to diet, nutrition and the prevention of chronic diseases. Public Health Nutr 7(1a). doi: 10.1079/phn2003584
  15. 15.
    Doan A, Ramakrishnan R, Halevy AY (2011) Crowdsourcing systems on the world-wide web. Commun ACM 54(4):86–96. doi: 10.1145/1924421.1924442 CrossRefGoogle Scholar
  16. 16.
    Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó X, Basora J, Muñoz MA, Sorlí JV, Martínez JA, Martínez-González MA (2013) Primary prevention of cardiovascular disease with a mediterranean diet. N Engl J Med 368(14):1279–1290. doi: 10.1056/nejmoa1200303 CrossRefGoogle Scholar
  17. 17.
    Farmer AD, Bruckner Holt CE, Cook MJ, Hearing SD (2009) Social networking sites: a novel portal for communication. Postgrad Med J 85(1007):455–459. doi: 10.1136/pgmj.2008.074674 CrossRefGoogle Scholar
  18. 18.
    Fleury J (1992) An exploration of the role of social networks in cardiovascular risk reduction. Heart & Lung: J Crit Care 22(2):134–144Google Scholar
  19. 19.
    Forouhi N, Sattar N, Tillin T, McKeigue P, Chaturvedi N (2006) Do known risk factors explain the higher coronary heart disease mortality in south asian compared with european men? prospective follow-up of the southall and brent studies, uk. Diabetologia 49(11):2580–2588 . doi: 10.1007/s00125-006-0393-2 CrossRefGoogle Scholar
  20. 20.
    Gardener S, Gu Y, Rainey-Smith SR, Keogh JB, Clifton PM, Mathieson SL, Taddei K, Mondal A, Ward VK, Scarmeas N, Barnes M, Ellis KA, Head R, Masters CL, Ames D, Macaulay SL, Rowe CC, Szoeke C, Martins RN (2012). Translational Psychiatry 2(10):e164. doi: 10.1038/tp.2012.91 CrossRefGoogle Scholar
  21. 21.
    Greene J, Choudhry N, Kilabuk E, Shrank W (2011) Online social networking by patients with diabetes: A qualitative evaluation of communication with facebook. J Gen Intern Med 26(3):287–292. doi: 10.1007/s11606-010-1526-3 CrossRefGoogle Scholar
  22. 22.
    Griffiths KM, Calear AL, Banfield M (2009) Systematic review on internet support groups (ISGs) and depression (1): Do ISGs reduce depressive symptoms?. J Med Internet Res 11(3):e40. doi: 10.2196/jmir.1270 CrossRefGoogle Scholar
  23. 23.
    Hamer M, Stamatakis E (2009) Physical activity and mortality in men and women with diagnosed cardiovascular disease. Eur J Cardiovasc Prev Rehabil 16(2):156–160. doi: 10.1097/hjr.0b013e32831f1b77 CrossRefGoogle Scholar
  24. 24.
    Hawn C (2009) Take two aspirin and tweet me in the morning: How twitter, facebook, and other social media are reshaping health care. Health Affairs 28(2):361–368. doi: 10.1377/hlthaff.28.2.361 CrossRefGoogle Scholar
  25. 25.
    Hoevenaar-Blom MP, Nooyens ACJ, Kromhout D, Spijkerman AMW, Beulens JWJ, van der Schouw YT, de Mesquita BB, Verschuren WMM (2012) Mediterranean style diet and 12-year incidence of cardiovascular diseases: The EPIC-NL cohort study. PLoS ONE 7(9):e45,458. doi: 10.1371/journal.pone.0045458 CrossRefGoogle Scholar
  26. 26.
    Hoey LM, Ieropoli SC, White VM, Jefford M (2008) Systematic review of peer-support programs for people with cancer. Patient Educ Couns 70(3):315–337. doi: 10.1016/j.pec.2007.11.016 CrossRefGoogle Scholar
  27. 27.
    Implementation of the safer social networking principles for the eu. Accessed: 2015-12-04Google Scholar
  28. 28.
    Iso 9241-11: Ergonomic requirements for office work with visual display terminals (vdts) - part 11 : Guidance on usability (1998)Google Scholar
  29. 29.
    Leon AS, Connett J, Jacobs DR, Rauramaa R (1987) Leisure-time physical activity levels and risk of coronary heart disease and death: The multiple risk factor intervention trial. JAMA 258(17):2388–2395. doi: 10.1001/jama.1987.03400170074026 CrossRefGoogle Scholar
  30. 30.
    Li JS, Barnett TA, Goodman E, Wasserman RC, Kemper AR (2012) Approaches to the prevention and management of childhood obesity: The role of social networks and the use of social media and related electronic technologies: A scientific statement from the american heart association. Circulation 127(2):260–267. doi: 10.1161/cir.0b013e3182756d8e CrossRefGoogle Scholar
  31. 31.
    Liu G, Yan Y, Ricci E, Yang Y, Han Y, Winkler S, Sebe N (2015) Inferring painting style with multi-task dictionary learning. In: 0001 QY, Wooldridge M (eds) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp 2162–2168. AAAI Press
  32. 32.
    Lloyd-Jones D, Adams RJ, Brown T.M, Carnethon M, Dai S, Simone G.D, Ferguson T.B, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2009) Heart disease and stroke statistics – 2010 update: A report from the american heart association. Circulation 121(7):e46–e215. doi: 10.1161/circulationaha.109.192667 Google Scholar
  33. 33.
    Lohse B (2013) Facebook is an effective strategy to recruit low-income women to online nutrition education. J Nutr Educ Behav 45(1):69–76. doi: 10.1016/j.jneb.2012.06.006 CrossRefGoogle Scholar
  34. 34.
    McNelly RA, Latifi R, Barker G (2008) Integrating telemedicine and telehealth: Putting it all together. Current principles and practices of telemedicine and e-Health 131:23Google Scholar
  35. 35.
    Meingast M, Roosta T, Sastry S (2006) Security and privacy issues with health care information technology. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. Institute of Electrical & Electronics Engineers (IEEE). doi: 10.1109/iembs.2006.260060
  36. 36.
    Nie L, Wang M, Zhang L, Yan S, Zhang B, Chua T (2015) Disease inference from health-related questions via sparse deep learning. IEEE Trans Knowl Data Eng 27(8):2107–2119. doi: 10.1109/TKDE.2015.2399298 CrossRefGoogle Scholar
  37. 37.
    Nie L, Zhang L, Yang Y, Wang M, Hong R, Chua T (2015) Beyond doctors: Future health prediction from multimedia and multimodal observations. In: Proceedings of the 23rd Annual ACM Conference on Multimedia Conference, MM ’15, Brisbane, Australia, October 26 - 30, 2015, pp 591–600. doi: 10.1145/2733373.2806217
  38. 38.
    Nielsen J (1993) Usability engineering. Morgan Kaufmann Publishers Inc., San FranciscoMATHGoogle Scholar
  39. 39.
    Nielsen J Designing web usability: The practice of simplicity. (1999). Query date: 2015-10-16Google Scholar
  40. 40.
    Norman D.A. (2002) The design of everyday things. Basic Books, Inc., New YorkGoogle Scholar
  41. 41.
    Röcker C, Ziefle M, Holzinger A (2014) From computer innovation to human integration: Current trends and challenges for pervasive health technologies. In: Holzinger A, Ziefle M, Röcker C (eds) Pervasive Health. Springer, London, pp 1–17. doi: 10.1007/978-1-4471-6413-5_1 CrossRefGoogle Scholar
  42. 42.
    Sartori A, Yan Y, zbal G, Salah AAA, Salah AA, Sebe N (2015) Looking at mondrian’s victory boogie-woogie: What do i feel. In: 0001 QY, Wooldridge M (eds) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 2503–2509. AAAI Press.
  43. 43.
    Schuler D, Namioka A (1993) Participatory design: perspectives on systems design. L. Erlbaum Associates Inc.Google Scholar
  44. 44.
    Sofi F, Cesari F, Abbate R, Gensini GF, Casini A (2008) Adherence to mediterranean diet and health status: meta-analysis. BMJ 337. doi: 10.1136/bmj.a1344
  45. 45.
    Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a mediterranean diet and survival in a greek population. N Engl J Med 348(26):2599–2608. doi: 10.1056/NEJMoa025039. PMID: 12826634CrossRefGoogle Scholar
  46. 46.
    Vandelanotte C, Caperchione CM, Ellison M, George ES, Maeder A, Kolt GS, Duncan MJ, Karunanithi M, Noakes M, Hooker C, Viljoen P, Mummery WK (2013) What kinds of website and mobile phone–delivered physical activity and nutrition interventions do middle-aged men want?. J Health Commun 18 (9):1070–1083. doi: 10.1080/10810730.2013.768731 CrossRefGoogle Scholar
  47. 47.
    Weintraub WS, Daniels SR, Burke LE, Franklin BA, Goff DC, Hayman LL, Lloyd-Jones D, Pandey DK, Sanchez EJ, Schram AP, Whitsel LP (2011) Value of primordial and primary prevention for cardiovascular disease: A policy statement from the american heart association. Circulation 124(8):967–990. doi: 10.1161/cir.0b013e3182285a81 CrossRefGoogle Scholar
  48. 48.
    Who J, Consultation FE (2003) Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser 916(i-viii)Google Scholar
  49. 49.
    Zhang L, Gao Y, Xia Y, Lu K, Shen J, Ji R (2014) Representative discovery of structure cues for weakly-supervised image segmentation. IEEE Transactions on Multimedia 16(2):470–479. doi: 10.1109/TMM.2013.2293424 CrossRefGoogle Scholar
  50. 50.
    Zhang L, Han Y, Yang Y, Song M, Yan S, Tian Q (2013) Discovering discriminative graphlets for aerial image categories recognition. IEEE Trans Image Process 22(12):5071–5084. doi: 10.1109/TIP.2013.2278465 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Maria Claudia Buzzi
    • 1
  • Marina Buzzi
    • 1
  • Daniele Franchi
    • 2
  • Davide Gazzè
    • 1
  • Giorgio Iervasi
    • 2
  • Andrea Marchetti
    • 1
  • Alessandro Pingitore
    • 2
  • Maurizio Tesconi
    • 1
  1. 1.Institute of Informatics and Telematics (IIT)PisaItaly
  2. 2.Institute of Clinical Physiology (IFC)PisaItaly

Personalised recommendations