Advertisement

Multimedia Tools and Applications

, Volume 76, Issue 2, pp 2379–2397 | Cite as

Image noise level estimation based on higher-order statistics

  • Mostafa Mehdipour Ghazi
  • Hakan Erdogan
Article

Abstract

Noise level estimation is a required step for many preprocessing algorithms in computer vision such as image denoising. In this paper, a model-based technique for additive white Gaussian noise level estimation is proposed via matching moments of eligible transform coefficients of a single image. We assume that noise and image signals are independent and seek to use an image transform that preserves distribution characteristics of noise. This transform should also result in coefficients with a generalized Gaussian distribution for the image itself. We use block-based discrete cosine transform (DCT) and discrete wavelet transform (DWT) which are shown to satisfy these requirements. The proposed method fits the histogram of AC coefficients of all DCT blocks or histogram of all high frequency wavelet coefficients with a generalized Gaussian distribution and attempts to estimate the noise variance through matching the estimated and true values of moments. Since the modeled distributions are symmetric and hence all odd moments are zero, our approach involves solving a nonlinear system of equations based on the method of moments using only even moments. The performance of the proposed method is compared to those of the best prevalent algorithms proposed for noise level estimation using patch-based and model-based techniques. The results on three different image databases show that the proposed scheme outperforms previous techniques in general.

Keywords

Noise level estimation Image denoising Method of moments Generalized Gaussian distribution 

References

  1. 1.
    Aja-Fernández S, Vegas-Sánchez-Ferrero G, Martín-Fernández M, Alberola-López C (2009) Automatic noise estimation in images using local statistics. additive and multiplicative cases. Image Vision Computing 27(6):756–770. doi: 10.1016/j.imavis.2008.08.002 CrossRefGoogle Scholar
  2. 2.
    Banham MR, Katsaggelos AK (1996) Spatially adaptive wavelet-based multiscale image restoration. IEEE Trans Image Process 5 (4):619–634. doi: 10.1109/83.491338 CrossRefGoogle Scholar
  3. 3.
    Buades A, Coll B, Morel JM (2010) Image denoising methods. A new nonlocal principle. SIAM Review 113–147. doi: 10.1137/090773908
  4. 4.
    Chang SG, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9(9):1532–1546. doi: 10.1109/83.862633 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Corner BR, Narayanan RM, Reichenbach SE (2003) Noise estimation in remote sensing imagery using data masking. Int J Remote Sens 24(4):689–702. doi: 10.1080/01431160210164271 CrossRefGoogle Scholar
  6. 6.
    Danielyan A, Foi A (2009) Noise variance estimation in nonlocal transform domain. In: International workshop on local and non-local approximation in image processing, pp 41–45. doi: 10.1109/LNLA.2009.5278404
  7. 7.
    Do MN, Vetterli M (2002) Wavelet-based texture retrieval using generalized Gaussian density and kullback-leibler distance. IEEE Trans Image Process 11(2):146–158. doi: 10.1109/83.982822 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41 (3):613–627. doi: 10.1109/18.382009 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Duijster A, Scheunders P, Backer SD (2009) Wavelet-based EM algorithm for multispectral-image restoration. IEEE Trans Geosci Remote Sens 47(11):3892–3898. doi: 10.1109/TGRS.2009.2031103 CrossRefGoogle Scholar
  10. 10.
    Forouzanfar M, Moghaddam HA, Ghadimi S (2008) Locally adaptive multiscale bayesian method for image denoising based on bivariate normal inverse gaussian distributions. Int J Wavelets Multiresolution Inf Process 6 (4):653–664. doi: 10.1142/S0219691308002562 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goljan M, Fridrich J, Holotyak T (2006) New blind steganalysis and its implications. In: Proceedings of the SPIE, security, steganography, and watermarking of multimedia contents VI, pp 1–13. doi: 10.1117/12.643254
  12. 12.
    Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice-Hall, Inc., Upper Saddle RiverGoogle Scholar
  13. 13.
    Hamza AB, Krim H, Unal GB (2002) Unifying probabilistic and variational estimation. IEEE Signal Proc Mag 19(5):37–47. doi: 10.1109/MSP.2002.1028351 CrossRefGoogle Scholar
  14. 14.
    Huang X, Chen L, Tian J, Zhang X (2015) Blind image noise level estimation using texture-based eigenvalue analysis. Multimedia Tools and Applications:1–12. doi: 10.1007/s11042-015-2452-5
  15. 15.
    Immerkær J (1996) Fast noise variance estimation. Comp Vision Image Underst 64(2):300–302. doi: 10.1006/cviu.1996.0060 CrossRefGoogle Scholar
  16. 16.
    Lam EY, Goodman JW (2000) A mathematical analysis of the dct coefficient distributions for images. IEEE Trans Image Process 9(10):1661–1666. doi: 10.1109/83.869177 CrossRefzbMATHGoogle Scholar
  17. 17.
    Lee JS, Hoppel K (1989) Noise modeling and estimation of remotely-sensed images. In: Proceedings of international geoscience and remote sensing symposium, vol 2, pp 1005–1008. doi: 10.1109/IGARSS.1989.579061
  18. 18.
    Liu X, Tanaka M, Okutomi M (2012) Noise level estimation using weak textured patches of a single noisy image. In: Proceedings of international conference on image processing, pp 665–668. doi: 10.1109/ICIP.2012.6466947
  19. 19.
    Liu X, Tanaka M, Okutomi M (2013) Single-image noise level estimation for blind denoising. IEEE Trans Image Process 22(12):5226–5237. doi: 10.1109/TIP.2013.2283400 CrossRefGoogle Scholar
  20. 20.
    Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th IEEE international conference on computer vision, vol 2, pp 416–423. doi: 10.1109/ICCV.2001.937655
  21. 21.
    Olsen SI (1993) Estimation of noise in images: an evaluation. CVGIP: Graphical Models Image Process 55(4):319–323. doi: 10.1006/cgip.1993.1022 Google Scholar
  22. 22.
    Ponomarenko N, Lukin V, Zelensky A, Egiazarian K, Carli M, Battisti F (2009) TID2008 – A database for evaluation of full-reference visual quality assessment metrics. Adv Modern Radioelectronics 10(4):30–45Google Scholar
  23. 23.
    Pyatykh S, Hesser J, Zheng L (2013) Image noise level estimation by principal component analysis. IEEE Trans Image Process 22(2):687–699. doi: 10.1109/TIP.2012.2221728 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rank K, Lendl M, Unbehauen R (1999) Estimation of image noise variance. IEE Proc Vis Image Signal Process 146(2):80–84. doi: 10.1049/ip-vis:19990238 CrossRefGoogle Scholar
  25. 25.
    Rosin PL (1998) Thresholding for change detection. In: Sixth international conference on computer vision, pp 274–279. doi: 10.1109/ICCV.1998.710730
  26. 26.
    Shin D-H, Park R-H, Yang S, Jung J-H (2005) Block-based noise estimation using adaptive Gaussian filtering. IEEE Trans Consum Electron 51 (1):218–226. doi: 10.1109/TCE.2005.1405723 CrossRefGoogle Scholar
  27. 27.
    Simoncelli EP (1999) Bayesian denoising of visual images in the wavelet domain. In: Lecture notes in statistics. Springer, pp 291–308. doi: 10.1007/978-1-4612-0567-8_18
  28. 28.
    Stefano AD, White PR, Collis WB (2004) Training methods for image noise level estimation on wavelet components. EURASIP J Adv Signal Process 2004 (16):2400–2407. doi: 10.1155/S1110865704401218 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Uss M, Vozel B, Lukin V, Abramov S, Baryshev I, Chehdi K (2011) Image informative maps for estimating noise standard deviation and texture parameters. EURASIP J Adv Signal Process 1. doi: 10.1155/2011/806516
  30. 30.
    Varanasi MK, Aazhang B (1989) Parametric generalized Gaussian density estimation. J Acoust Soc Am 86(4):1404–1415. doi: 10.1121/1.398700 CrossRefGoogle Scholar
  31. 31.
    Yu S, Zhang A, Li H (2012) A review of estimating the shape parameter of generalized Gaussian distribution. J Comput Inf Syst 8(21):9055–9064Google Scholar
  32. 32.
    Zhao Q, Li H-W, Shen Y-T (2004) On the sum of generalized Gaussian random signals. In: Proceedings of the 7th international conference on signal processing, vol 1, pp 50–53. doi: 10.1109/ICOSP.2004.1452578
  33. 33.
    Zoran D, Weiss Y (2009) Scale invariance and noise in natural images. In: Proceedings of the IEEE international conference on computer vision, pp 2209–2216. doi: 10.1109/ICCV.2009.5459476

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations