Multimedia Tools and Applications

, Volume 76, Issue 2, pp 1941–1957 | Cite as

Multiple human tracking based on distributed collaborative cameras

  • Zhaoquan Cai
  • Shiyi Hu
  • Yukai Shi
  • Qing Wang
  • Dongyu Zhang
Article

Abstract

Due to the horizon limitation of single camera, it is difficult for single camera based multi-object tracking system to track multiple objects accurately. In addition, the possible object occlusion and ambiguous appearances often degrade the performance of single camera based tracking system. In this paper, we propose a new method of multi-object tracking by using multi-camera network. This method can handle many problems in the existing tracking systems, such as partial and total occlusion, ambiguity among objects, time consuming and etc. Experimental results of the prototype of our system on three pedestrian tracking benchmarks demonstrate the effectiveness and practical utility of the proposed method.

Keywords

Multi-object tracking Collaborative cameras Video surveillance 

References

  1. 1.
    Andriluka M, Roth S, Schiele B (2008) People-tracking-by-detection and people-detection-by-tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, USA, pp 1-10Google Scholar
  2. 2.
    Berclaz J, Fleuret F, Turetken E (2011) Multiple object tracking using k-shortest paths optimization. IEEE Trans Pattern Anal Mach Intell 33(9):1806–1819CrossRefGoogle Scholar
  3. 3.
    Pascal Fua (2013) Multi-commodity network flow for tracking multiple people. IEEE Trans Pattern Anal Mach Intell 36(8):1614–1627Google Scholar
  4. 4.
    Bredereck M, Jiang X, Korner M, Denzler J (2012) Data association for multi-object tracking-by-detection in multi-camera networks. In: Proceedings of the 6th ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC), Hong Kong, pp 1–6Google Scholar
  5. 5.
    Breitenstein MD, Reichlin F, Leibe B, Koller-Meier E, Van Gool L (2009) Markovian tracking-by-detection from a single, uncalibrated camera. In: IEEE CVPR Workshop on Performance Evaluation of Tracking and Surveillance (CVPR Workshop), pp 1–10Google Scholar
  6. 6.
    Breitenstein MD, Reichlin F, Leibe B, Koller-Meier E, Van Gool L (2009) Robust tracking-by-detection using a detector confidence particle filter. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Kyoto, pp 1515–1522Google Scholar
  7. 7.
    Breitenstein MD, Reichlin F, Leibe B (2011) Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans Pattern Anal Mach Intell 33(9):1820–1833CrossRefGoogle Scholar
  8. 8.
    Brendel W, Amer M, Todorovic S (2011) Multiobject tracking as maximum weight independent set. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Kyoto, pp 1515–1522Google Scholar
  9. 9.
    Choi W, Savarese S (2010) Multiple target tracking in world coordinate with single, minimally calibrated camera. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 553–567Google Scholar
  10. 10.
    Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, pp 886–893Google Scholar
  11. 11.
    “EPFL ” data set: Multi-camera Pedestrian Videos http://cvlab.epfl.ch/data/pom/
  12. 12.
    Felzenszwalb PF, Girshick RB, McAllester D (2010) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645CrossRefGoogle Scholar
  13. 13.
    Fleuret F, Berclaz J, Lengagne R (2008) Multicamera people tracking with a probabilistic occupancy map. IEEE Trans Pattern Anal Mach Intell 30(2):267–282CrossRefGoogle Scholar
  14. 14.
    Fragkiadaki K, Zhang W, Zhang G, Shi J (2012) Two-granularity tracking: mediating trajectory and detection graphs for tracking under occlusions. In: Proceedings of the European Conference on Computer Vision (ECCV), Firenze, Italy, pp 552–565Google Scholar
  15. 15.
    Huang C, Wu B, Nevatia R (2008) Robust object tracking by hierarchical association of detection responses. In: Proceedings of the European Conference on Computer Vision (ECCV), Marseille-France, pp 788–801Google Scholar
  16. 16.
    ICG Lab 6 (Multi-Camera Multi-Object Tracking) http://lrs.icg.tugraz.at/download.php
  17. 17.
    Jiang X, Rodner E, Denzler J (2012) Multi-Person tracking-by-detection based on calibrated multi-camera systems. In: Proceedings of the International Conference on Computer Vision and Graphics (ICCVG), Warsaw, Poland, pp 743–751Google Scholar
  18. 18.
    Jiuqing W, Achuan L (2015) Multiple people tracking using camera networks with overlapping views. Int J Distrib Sens Netw. doi:10.1155/2015/591067
  19. 19.
    Keni B, Rainer S (2008) Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J Image Video Process. doi:10.1155/2008/246309
  20. 20.
    Khan SM, Shah M (2006) A multi-view approach to tracking people in crowded scenes using a planar homography constraint. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 133-146Google Scholar
  21. 21.
    Khan SM, Shah M (2009) Tracking multiple occluding people by localizing on multiple scene planes. IEEE Trans Pattern Anal Mach Intell 31(3):505–519CrossRefGoogle Scholar
  22. 22.
    Kim K, Chalidabhongse TH, Harwood D (2005) Real-time foreground–background segmentation using codebook model. Real-Time Imaging 11(3):172–185CrossRefGoogle Scholar
  23. 23.
    Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Logist Q 2(1–2):83–97MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Leibe B, Leonardis A, Schiele B (2008) Robust object detection with interleaved categorization and segmentation. Int J Comput Vis 77(1–3):259–289CrossRefGoogle Scholar
  25. 25.
    Lin L, Zhu S-C, Wang Y (2007) Layered graph match with graph editing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1-8Google Scholar
  26. 26.
    Lin L, Wu T, Porway J, Xu Z (2009) A stochastic graph grammar for compositional object representation and recognition. Pattern Recogn 42(7):1297–1307CrossRefMATHGoogle Scholar
  27. 27.
    Lin L, Lu Y, Pan Y, Chen X (2012) Integrating graph partitioning and matching for trajectory analysis in video surveillance. IEEE Trans Image Process 21(12):4844–4857MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lin L, Zeng K, Wang Y, Xu Y-Q, Zhu S-C (2013) Video stylization: painterly rendering and optimization with content extraction. IEEE Trans Circuits Syst Video Technol 23(4):577–590CrossRefGoogle Scholar
  29. 29.
    Lin L, Xu Y, Liang X, Lai JH (2014) Complex background subtraction by pursuing dynamic spatio-temporal models. IEEE Trans Image Process 23(7):3191–3202MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lin L, Wang X, Yang W, Lai JH (2015) Discriminatively trained and-or graph models for object shape detection. IEEE Trans Pattern Anal Mach Intell 37(5):959–972CrossRefGoogle Scholar
  31. 31.
    Lin L, Cu Y, Li C, Cheng H, Zuo W (2015) Detection-free Multi-object Tracking by Reconfigurable Inference with Bundle Representations. IEEE Trans Cybern. doi:10.1109/TCYB.2015.2478515 Google Scholar
  32. 32.
    Liu X, Lin L, Jin H, Yan S, Tao W (2011) Integrating spatio-temporal context with multiview representation for object recognition in visual surveillance. IEEE Trans Circuits Syst Video Technol 21(4):393–407CrossRefGoogle Scholar
  33. 33.
    Liu N, Wu H, Lin L (2015) Hierarchical ensemble of background models for PTZ-based video surveillance. IEEE Trans Cybern 45(1):89–102CrossRefGoogle Scholar
  34. 34.
    Milan A, Roth S, Schindler K (2014) Continuous energy minimization for multi-target tracking. IEEE Trans Pattern Anal Mach Intell 36(1):58–72Google Scholar
  35. 35.
    Okuma K, Taleghani A, De Freitas N (2004) A boosted particle filter: multitarget detection and tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 28–38Google Scholar
  36. 36.
    Orwell J, Massey S, Remagnino P (1999) A multi-agent framework for visual surveillance. In: Proceedings of the IEEE Conference on Image Analysis and Processing, Venice, pp 1104–1107Google Scholar
  37. 37.
    Richard H, Zisserman A (2004) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  38. 38.
    Schindler K, Van Gool L, Leibe B (2007) Coupled detection and trajectory estimation for multi-object tracking. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Rio de Janeiro, pp 1–8Google Scholar
  39. 39.
    Wang K, Lin L, Lu J, Li C, Shi K (2015) PISA: pixelwise image saliency by aggregating complementary appearance contrast measures with edge-preserving coherence. IEEE Trans Image Process 24(10):3019–3033MathSciNetCrossRefGoogle Scholar
  40. 40.
    Yun Y, Gu IYH, Aghajan H (2012) Maximum-likelihood object tracking from multi-view video by combining homography and epipolar constraints. In: Proceedings of the Sixth International Conference on Distributed Smart Cameras (ICDSC), Hong Kong, pp 1–6Google Scholar
  41. 41.
    Zhang L, Li Y, Nevatia R (2008) Global data association for multi-object tracking using network flows. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, pp 1–8Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhaoquan Cai
    • 1
  • Shiyi Hu
    • 2
  • Yukai Shi
    • 2
  • Qing Wang
    • 2
  • Dongyu Zhang
    • 2
  1. 1.Huizhou UniversityHuizhouChina
  2. 2.Sun Yat-sen UniversityGuangzhouChina

Personalised recommendations