Multimedia Tools and Applications

, Volume 76, Issue 2, pp 1959–1981 | Cite as

Optimization algorithm based on texture feature and frame correlation in HEVC



Newly proposed video standard High Efficiency Video Coding (HEVC) achieves higher compression performance than previous ones. In this paper, we propose a novel algorithm for intra prediction, which scales the complexity of pictures’ texture to perform different levels of simplification on Most Probable Mode(MPM) selection. And the proposed algorithm for inter prediction initializes current Coding Unit(CU) depth information with that information of temporally adjacent frame’s co-located CU. These two proposed algorithms, utilizing the texture feature and correlation of adjacent frames, reduce the computational complexity to improve the efficiency of encoder. The proposed algorithms decrease more than 30 % of encoding time with nearly negligible increment in bit-rate, especially work well when encoding sequences with high definition.


HEVC Texture feature Adjacent correlation Intra prediction Inter prediction 


  1. 1.
    Bjontegaard G (2011) Calculations of average PSNR cifferences between RD-curves, Doc.VCEG-M33Google Scholar
  2. 2.
    Bossen F (2013) Common HM test conditions and software reference configurations, document JCTVC-L1100, ITU-T/ISO/IEC joint collaborative team on video coding (JCT-VC)Google Scholar
  3. 3.
    Bossen F, Bross B, Shring K, Flynn D (2012) HEVC complexity and implementation analysis. IEEE Trans Circuits Syst Video Technol 22(12):1684–1695CrossRefGoogle Scholar
  4. 4.
    Bross B, Han W-J, Ohm J-R, Sullivan GJ, Wiegand T (2013) High Efficiency Video Coding (HEVC) text specification draft 10, document JCTVC-L1003, JCT-VC Geneva, SwitzerlandGoogle Scholar
  5. 5.
    Choi JY, Ro YM, Plataniotis KN (2012) Color local texture features for color face recognition. IEEE Trans Image Process 21(3):1366–1380MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Helle P, Oudin S, Bross B (2012) Block merging for quadtree-based partitioning in HEVC. IEEE Transactions on Circuits and Systems for Video TechnologyGoogle Scholar
  7. 7.
    Jiang W, Ma H, Chen Y (2012) Gradient based fast mode decision algorithm for intra prediction in HEVC. Consumer electronics, communications and networks, international conference, pp 1836–1840Google Scholar
  8. 8.
    JCT-VC HEVC reference software version HM 12.0, available online at
  9. 9.
    Kandaswamy U, Adjeroh D, Schuckers S, Hanbury A (2012) Robust color texture features under varying illumination conditions. IEEE Trans Syst Man Cybern 42(1):58–68CrossRefGoogle Scholar
  10. 10.
    Kim I-K, McCann K, Sugimoto K, Bross B, Han WJ (2012) Hm7: high efficiency video coding (HEVC) test model 7 encoder description. In: Proceedings of the 9th meeting, no. JCTVC-I1002, Geneva, SZGoogle Scholar
  11. 11.
    Kim RJ, Yang J, Won K, Jeon B (2012) Early determination of mode decision for HEVC. In: Proceedings of the picture coding symposium (PCS), pp 449–452Google Scholar
  12. 12.
    Lee KH (2008) Technical considerations for adhoc group on new challenges in video coding standardization, Proceedings of the 85th MPEG Meeting, ISO/IEC, No.M15580Google Scholar
  13. 13.
    Lee HS, Kim KY, Kim TR, Park GH (2012) Fast encoding algorithm based on depth of coding-unit for high efficiency video coding. Opt Eng 51(6):1–11Google Scholar
  14. 14.
    Lee YM, Sun YT, Lin Y (2010) SATD-based intra mode decision for H.264/AVC video coding. IEEE Trans Circ Syst Video Technol 20(3):463–469CrossRefGoogle Scholar
  15. 15.
    Liu Q, Yang Y, Gao Y, Hong R (2013) Texture-adaptive hole-filling algorithm in raster-order for three-dimensional video applications. Neurocomputing 111:154–160CrossRefGoogle Scholar
  16. 16.
    Liu Q, Yang Y, Ji R, Gao Y, Yu L (2012) Cross-view down/up-sampling method for multiview depth video coding. IEEE Signal Process Lett 19(5):295–298CrossRefGoogle Scholar
  17. 17.
    McCann K et al (2012) HM6: high efficiency video coding (HEVC) test model 6 encoder description. In: Proceedings of the 8th JCT-VC meeting, San Jos, CA, No. JCTVC-H1002, pp 7–10Google Scholar
  18. 18.
    Ohm JR, Sullivan GJ, Schwarz H, Tan TK, Wiegand T (2012) Comparison of the coding efficiency of video coding standards-including high efficiency video coding (HEVC). IEEE Trans Circuits Syst Video Technol 22(12):1668–1683Google Scholar
  19. 19.
    Shen L, Liu Z, Zhang X, Zhao W, Zhang Z (2013) An effective CU size decision algorithm for HEVC encoders. IEEE Trans Multimedia 15(2):465–470CrossRefGoogle Scholar
  20. 20.
    Shuqing F, Mei Y, Fen C, Shengyang X, Gangyi J (2014) Fast adaptive coding unit depth range selection algorithm for high efficiency video coding. Sensors & Transducers 183(12):245– 252Google Scholar
  21. 21.
    Sullivan GJ, Ohm J-R, Han W-J, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 12:22Google Scholar
  22. 22.
    Tian G, Goto S (2012) Content adaptive prediction unit size decision algorithm for HEVC intra coding. IEEE picture coding symposium, pp 405–408Google Scholar
  23. 23.
    Wiegand T, Sullivan G, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video coding tandard. IEEE Trans Circuits Syst Video Technol 13 (7):560–576CrossRefGoogle Scholar
  24. 24.
    Xiong J (2013) Fast coding unit selection algorithm for high efficiency video coding intra prediction. Opt Eng 52(7):071 504CrossRefGoogle Scholar
  25. 25.
    Xiong J, Li HL, Wu QB, Meng F (2014) A fast HEVC inter CU selection method based on pyramid motion divergence. IEEE Trans Multimedia 16(2):559–564CrossRefGoogle Scholar
  26. 26.
    Zhou CT, Zhou F, Chen YW (2013) Spatio-temporal correlation-based fast coding unit depth decision for high efficiency video coding. J Electron Imaging 22(4)Google Scholar
  27. 27.
    Zhong GY, He XH, Qing LB, Li Y (2013) Fast inter-mode decision algorithm for high-efficiency video coding based on similarity of coding unit segmentation and partition mode between two temporally adjacent frames. J Electron Imaging 22(2)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Information and Software EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations