Skip to main content
Log in

Stego anomaly detection in images exploiting the curvelet higher order statistics using evolutionary support vector machine

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Steganalysis is an important extension to existing security infrastructure, and is gaining more research focus of forensic investigators and information security researchers. This paper reports the design principles and evaluation results of a new experimental blind image steganalysing system. This work approaches the steganalysis task as a pattern classification problem. The detection accuracy of the steganalyser depends on the selection of low-dimensional informative features. We investigate this problem as a three step process and propose a novel steganalyser with the following implications: a) Selection of the Curvelet sub-band image representation that offers better discrimination ability for detecting stego anomalies in images, than other conventional wavelet transforms. b) Exploiting the empirical moments of the transformation as effective steganalytic features c) Realizing the system using an efficient classifier, evolutionary-Support Vector Machine (SVM) model that provides promising classification rate. An extensive empirical evaluation on a database containing 5600 clean and stego images shows that the proposed scheme is a state-of-the-art steganalyser that outperforms other previous steganalytic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Avcibas I, Memon N, Sankur B (2003) Steganalysis using image quality metrics. IEEE Trans Image Process 12(2):221–229

    Article  MathSciNet  Google Scholar 

  2. Avcibas I, Memon N, kharrazi M, Sankur B (2005) Image steganalysis with binary similarity measures. J EURASIP, Appl Signal Process, Hindawi

  3. Baker JE (1985) Adaptive selection methods for genetic algorithms. In Proc. 1st Int’l Conf. On Genetic Algorithms. Pg 101–111

  4. Bánoci V, Broda M, Bugár G, Levický D (2014) Universal image steganalytic method. Radio Eng 23(4):1213–1220

    Google Scholar 

  5. Bender W, Gruhl D, Morimot N, Lu A (1996) Techniques for data hiding. IBM Syst J 35(3/4):313–336

    Article  Google Scholar 

  6. Brown A. S-tools version 4.0. [Online]. Available: http://members.tripod.com/steganography/stego/s-tools4.html

  7. Cachin C (1998) An information theoretic model for steganography, Lecture Notes in Computer Science: 2nd Int’l Workshop on Information Hiding 1525, pp. 306–318

  8. Candes EJ, Donoho DL (1999) Curvelets - a surprisingly effective nonadaptive representation for objects with edges,” In: Cohen A, Rabut C, Schumaker LL (eds) Curve and surface fitting: Saint-Malo

  9. Chang C-C, Lin C-J: LIBSVM: a Library for Support Vector Machines, 2001, Available at http://www.csie.ntu.edu.tw/cjlin/libsvm

  10. Cheng Q, Huang TS (2001) An additive approach to transform-domain information hiding and optimum detection structure. IEEE Trans Multimedia 3(3):273–284

    Article  Google Scholar 

  11. Cho S, Cha B-H, Gawecki m, Jay Kuo C-C (2013) Block-based image steganalysis: algorithm and performance evaluation. J Vis Commun Image Represent 24(7):846–856

    Article  Google Scholar 

  12. Cox IJ, Kilian J, Leighton FT, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12):1673–1687

    Article  Google Scholar 

  13. Dai M, Liu Y, Lin J (2008) Steganalysis based on feature reducts of rough set by using genetic algorithm, Proc. World Congress on Intelligent Control and Automation

  14. Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York

    MATH  Google Scholar 

  15. Farid H (2002) Detecting hidden messages using higher-order statistical models. In: Image Processing. 2002. International Conference on, Rochester, NY, USA 905–908

  16. Fridrich J (2000) Miroslav Goljan and Dorin Hogea, Attacking the OutGuess, Proc. ACM Intl. Conf. Information security

  17. Fridrich J (2004) Feature-Based Steganalysis for JPEG Images and its Implications for Future Design of Steganographic Schemes, Proc. Int. Workshop. Information hiding, vol.3200, Lecture. Computer science

  18. Fridrich J, Goljan M (2002) Practical steganalysis of digital images-state of the art. Proc SPIE 4675:1–13

    Article  Google Scholar 

  19. Fridrich J, Goljan M, Hogea D (2003) New methodology for breaking steganographic techniques for JPEGs, Proc SPIE Electronic Imaging, Santa Clara, CA, pp. 143–155

  20. Fu J-W, Qi Y-C, Yuan J-S (2007) Wavelet domain audio steganalysis based on statistical moments and PCA, Proc. IEEE Intl. Conf. Wavelet Analysis and Pattern recognition

  21. Geetha S, Sivatha Sindhu SS, Kamaraj N (2008) Steganalysis of LSB Embedded Images based on Adaptive Threshold Close Color Pair Signature, in Sixth IEEE Indian Conference on Computer Vision, Graphics and Image Processing ICVGIP 2008

  22. Goljan, Fridrich J (2015) CFA-aware features for steganalysis of color images, Proc. SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics XVIISan Francisco, CA

  23. Gonzalez FP, Balado F, Martin JRH (2003) Performance analysis of existing and new methods for data hiding with known-host information in additive channels. IEEE Trans Signal Process 51(4):960–980

    Article  MathSciNet  Google Scholar 

  24. Gu B, Sheng VS, Tay KY, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural Networks Learn Syst 27(7):1404–1416

    MathSciNet  Google Scholar 

  25. Harmsen JJ (2003) Steganalysis of additive noise modelable information hiding. Master’s thesis, Rensselaer Polytechnic Institute, Troy, New York, USA

  26. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press (reprinted in 1992 by MIT Press, Cambridge, MA)

  27. Holotyak T, Fridrich J, Voloshynovskiy S (2005) Blind statistical steganalysis of additive steganography using wavelet higher order statistics. In: Lecture Notes in Computer Science, Springer Berlin, Heidelberg, pp. 273–274

  28. Huang J, Shi YQ (1998) Adaptive image watermarking scheme based on visual masking. Electron Lett 34(8):748–750

    Article  Google Scholar 

  29. Huo X (1999) Sparse image representation via combined transforms. PhD thesis, Stanford Univesity

  30. Images. [Online]. Available: http://www.cl.cam.ac.uk/~fapp2/watermarking/benchmark/image_database.html

  31. Katzenbeisser S, Petitcolas FAP (2000) Information hiding techniques for steganography and digital watermarking. Artech House, Norwood

    Google Scholar 

  32. Kaushal S, Anindya S, Manjunath BS (2007) YASS: Yet another steganographic scheme that resists blind steganalysis, 9th International Workshop on Information Hiding, Saint Malo, Brittany, France, Jun

  33. Kim Y-S, Kwon O-H, Park R-H (1999) Wavelet based watermarking method for digital images using the human visual system. Electron Lett 35(6):466–468

    Article  Google Scholar 

  34. Korejwa J. Jsteg shell 2.0. [Online]. Available: http://www.tiac.net/users/korejwa/steg.htm

  35. Kutter M, Jordan F JK-PGS (Pretty Good Signature). [Online]. Available: http://ltswww.epfl.ch/~kutter/watermarking/JK_PGS.html

  36. Lee YK, Chen LH (2000) High capacity image steganographic model. Proc Inst Elect Eng, Vis Image Signal Process 147(3):288–294

    Article  MathSciNet  Google Scholar 

  37. Li F, Zhang X, Chen B, Feng G (2013) JPEG steganalysis with high-dimensional features and Bayesian ensemble classifier. IEEE Signal Process Lett 20(3):233–236

    Article  Google Scholar 

  38. Lie W-N, Chang L-C (1999) Data hiding in images with adaptive numbers of least significant bits based on human visual system, in Proc. IEEE Int. Conf. Image Processing, pp. 286–290

  39. Lie W-N, Lin G-S (2005) A feature-based classification technique for blind image steganalysis. IEEE Trans Multimedia 7(6):1007–1020

    Article  Google Scholar 

  40. Lie W-N, Lin G-S, Wu C-L, Wang T-C (2000) Robust image watermarking on the DCT domain. Proc IEEE Int Symp Circ System I:228–231

  41. Lyu S, Farid H (2006) Steganalysis using Higher-Order Image statistics. Proc IEEE Trans Inf Forensic Secur, Vol.1, no.1

  42. Manikopoulos C, Shi Y-Q, Song S, Zhang Z, Ni Z, Zou D (2002) Detection of block DCT-based steganography in gray-scale images. in Proc. 5th IEEE Workshop on Multimedia Signal Processing, pp. 355–358

  43. Marvel LM, Boncelet CG Jr, Retter CT (1999) Spread spectrum image steganography. IEEE Trans Image Process 8(8):1075–1083

    Article  Google Scholar 

  44. Min F (2007) A novel intrusion detection method based on combining ensemble learning with induction-Enhanced Particle Swarm Algorithm IEEE Third International Conference on Natural Computation (ICNC)

  45. Nikolaidis N, Pitas I (1998) Robust image watermarking in the spatial domain. Signal Process 66:385–403

    Article  MATH  Google Scholar 

  46. Ogihara T, Nakamura D, Yokoya N (1996) Data embedding into pictorial with less distortion using discrete cosine transform. In: Proc. ICPR’96, pp. 675–679

  47. Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–609

    Article  Google Scholar 

  48. Petitcolas AP, Anderson RJ, Kuhn MG (1999) Information hiding—A survey. Proc IEEE 87(7):1062–1078

    Article  Google Scholar 

  49. Pevny T, Fridrich J (2008) Multiclass detector of current steganographic methods for JPEG format. IEEE Trans Info Forensic Secur 3(4):635–650

    Article  Google Scholar 

  50. PictureMarc, Embed Watermark, v 1.00.45, Digimarc Corp Available: http://avcibas.home.uludag.edu.tr/mmsp.pdf

  51. Podilchuk CI, Wenjun Z (1998) Image-adaptive watermarking using visual models. IEEE J Select Areas Commun 16(4):525–539

    Article  Google Scholar 

  52. Ru X-M, Zhang H-J, Huang X (2005) Steganalysis of audio: Attacking the steghide. Proc IEEE, Int Conf Mach Learn Cybern 7:3937–3942

    Google Scholar 

  53. Sajedi H, Jamzad M (2010) CBS: contourlet-based steganalysis method. J Signal Process Syst 61(1):367–373

    Article  Google Scholar 

  54. Savoldi A, Gubian P (2007) Blind multi-class steganalysis system using wavelet statistics. In: IEEE International Conference on Intelligent Information Hiding and Multimedia Signal Processing IIHMSP'07, IEEE Computer Society, pp. 93–96

  55. Shaohui L, Hongxun Y, Wen G (2003) Neural Network based Steganalysis in Still images. Proc Int’l Conf Multimedia Expo, ICME 2:509–512

    Google Scholar 

  56. Shi YQ, Xuan G, Yang C, Gao J, Zhang Z, Chai P, Zou D, Chen C, Chen W (2005) Effective steganalysis based on statistical moments of wavelet characteristic function. In: IEEE International Conference on Information Technology: Coding and Computing, ITCC&newapos;05, IEEE Computer Society, pp. 768–773

  57. Starck J, Candes EJ, Donoho DL (2001) The curvelet transform for image denoising. IEEE Trans Image Process 11(6):670–684

    Article  MathSciNet  MATH  Google Scholar 

  58. Steganos II Security Suite.. [Online]. Available: http://www.steganos.com/english/steganos/download.htm

  59. Xia Z, Wang X, Sun X, Liu Q, Xiong N (2014) Steganalysis of LSB matching using differences between nonadjacent pixels”, Multimedia Tools and Applications, Springer Verlag, pp. 1–16. doi: 10.1007/s11042-014-2381-8

  60. Xia Z, Wang X, Sun X, Wang B (2014) Steganalysis of least significant bit matching using multi-order differences. Secur Commun Networks 7(8):1283–1291

    Article  Google Scholar 

  61. Xu B, Zhang Z, Wang J, Liu X (2007) Improved BSS based Schemes for Active steganalysis, Proc. ACIS Int. Conf. Software Engineering, Artificial Intelligence, Networking and parallel distributed computing

Download references

Acknowledgments

This paper is based upon work supported by the All India Council for Technical Education - Research Promotion Scheme under Grant No. 20/AICTE/RIFD/RPS(POLICY-II)65/2012-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Geetha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuramalingam, S., Karthikeyan, N., Geetha, S. et al. Stego anomaly detection in images exploiting the curvelet higher order statistics using evolutionary support vector machine. Multimed Tools Appl 75, 13627–13661 (2016). https://doi.org/10.1007/s11042-015-2984-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2984-8

Keywords

Navigation