Abstract
With advances in lasers, optics, and electronics, many new 3D display technologies have been proposed with prototypes in research labs or have entered the marketplace. Although some of these technologies (such as Stereoscopy) are familiar to people, other technologies, such as holography, remain far-fetched to most. This survey introduces the principles of current popular 3D display technologies, which are generally categorized into four categories: 3D movies, on-stage holograms, holographic projections and volumetric 3D displays. Furthermore, the limitations of each of the aforementioned technologies are deeply analyzed, and comparisons of these technologies are provided. Moreover, we note appropriate application situations for the various technologies. Because computer-generated hologram (CGH) technologies are considered to be the next generation of 3D display technology and have become a dominant direction in 3D display technology development, we address the challenges that CGH is currently facing and provide an insightful analysis of solutions proposed in recent years. Finally, we study the current 3D display applications associated with the four categorized technology principles.
This is a preview of subscription content, access via your institution.












References
4Deep inwater imaging. http://4-deep.com/, Accessed November 11, 2014
Active8-3D. http://www.activ8-3d.co.uk/, Accessed April 17, 2014
Adhya S, Noé J (2007) A complete ray-trace analysis of the mirage toy. In: Proceedings of SPIE, Education and Training in Optics and Photonics
Benzie P, Watson J, Surman P, Rakkolainen I, Hopf K, Urey H, Sainov V, von Kopylow C (2007) A survey of 3DTV displays: techniques and technologies. IEEE Trans Circuits Syst Video Technol 17(11):1647–1658
Berkela CV, Clarke JA (1997) Characterisation and optimisation of 3D-LCD module design. In: Proceedings of SPIE, Stereoscopic Displays and Virtual Reality Systems IV, vol 3012, pp 179– 186
Bosch A, Koning A, Meijboom F, McGhie J, Simoons M, Spek P, Bogers A (2005) Dynamic 3D echocardiography in virtual reality. Cardiovasc Ultrasound 3(1):1–4
Buckley E (2011) Holographic laser projection. J Displ Technol 7(3):135–140
Butler A, Hilliges O, Izadi S, Hodges S, Molyneaux D, Kim D, Kong D (2011) Vermeer: direct interaction with a 360∘ viewable 3D display
Campos P, Sugand K, Mirza K (2013) Holography in clinical anatomy education: a systematic review. Int J Surg 11(8):706
Colomb T, Montfort F, Kühn J, Aspert N, Cuche E, Marian A, Charrière F, Bourquin S, Marquet P, Depeursinge C (2006) Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy. J Opt Soc Am A 23(12):3177–3190
Computer-generated-holography. http://en.wikipedia.org/wiki/Computer-generated_holography, Accessed April 17, 2014
Dispair. http://displair.com/, Accessed April 17, 2014
Dodgson NA (2005) Autostereoscopic 3D displays. Computer 38(8):31–36
Dong H, Luo Z, Nagano A, Mavridis N (2012) An adaptive treadmill-style locomotion interface and its application in 3D interactive virtual market system. J Intell Serv Robot 5(3):159–167
Dong H, Oshiumi T, Nagano A, Luo Z (2010) Development of a 3D interactive virtual market system with adaptive treadmill control. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5238–5244
Dorval RK, Thomas M, Bareau JL (2003) Volumetric three-dimensional display system
Dubois F, Schockaert C, Callens N, Yourassowsky C (2006) Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt Express 14(13):5895–5908
Emre J, Andrei M, Vincenzo Q, Yuzhong P, R.J. HM (2005) Medicine Meets Virtual Reality 14: Accelerating Change in Healthcare, Next Medical Toolkit
Erik C (2002) Holographic projection screen
Fattal D, Peng Z, Tran T, Vo S, Fiorentino M, Brug J, Beausoleil RG (2013) A multi-directional backlight for a wide-angle, glasses-free 3D display. In: Proceedings of 2013 IEEE Photonics Conference, pp 24–25
Favalora GE (2005) Volumetric 3D displays and application infrastructure. Computer 38(8):37–44
Feleppa EJ (1972) Holography and medicine. IEEE Trans Biomed Eng 19 (3):194–205
Fernando A, Ekmekcioglu E, Worrall S (2013) 3DTV: processing and transmission of 3D video signals
Frere C, Leseberg D, Bryngdahl O (1986) Computer-generated holograms of three-dimensional objects composed of line segments. Opt Soc Am 3(5):726–730
Gabor D (1948) A new microscopic principle. Nature 161(4098):777–778
Gabor D (1949) Microscopy by reconstructed wave-fronts. In: Proceedings of the Royal Society of London A: Mathematical Physical and Engineering Sciences, vol 197, pp 454–487
Gabor D (1951) Microscopy by reconstructed wave fronts: II. In: Proceedings of the Physical Society, Section B, vol 64, p 449
Gabor D (1972) Holography, 1948–1971. Science 177(4046):299–313
Geng J (2008) Volumetric 3D display for radiation therapy planning. Displ Technol 4(4):437–450
Gershun A, Moon PH, Timoshenko G (1939) The light field
Greguss P (1975) Thoughts on the future of holography in biology and medicine. Opt Laser Technol 7(6):253–257
Greguss P (1976) Holographic interferometry in biomedical sciences. Opt Laser Technol 8(4):153–159
Halle MW (1994) Holographic stereograms as discrete imaging systems. In: Proceedings of SPIE, Practical Holography VIII, vol 2176, pp 73–84
Han F, Xu T, Tian C, Hou Z (2010) Investigation on human visual response latency. In: Proceedings of 2010 International Conference on Computer Design and Applications, vol 1, pp 602– 604
Harper G (2010) Holography projects for the evil genius
Hattori T, Ishigaki T, Shimamoto K, Sawaki A, Ishiguchi T, Kobayashi H (1999) Advanced autostereoscopic display for G-7 pilot project. In: Proceedings of SPIE, Stereoscopic Displays and Virtual Reality Systems VI, vol 3639, pp 66–75
Holliman NS, Dodgson NA, Favalora GE, Pockett L (2011) Three-dimensional displays: a review and applications analysis. IEEE Trans Broadcast 57(2):362–371
Holopro. http://www.holopro.com/en/home.html, Accessed April 19, 2014
Horobin R, Kiernan J (eds) (2002) Conn’s Biological Stains: A Handbook of Dyes, Stains and Fluorochromes for Use in Biology and Medicine
Huebschman ML, Munjuluri B, Garner HR (2003) Dynamic holographic 3-D image projection. Opt Express 11(5):437–445
Im HJ, Lee BJ, Hong HK, Shin HH (2010) Auto-stereoscopic 60 view 3D using slanted lenticular lens arrays. Journal of Information Display 8(4):23–26
Im K, Lee S, Park S (2015) A personalized display technology integrating the technologies of bio-signal measurements and multi-view 3D display. Multimed Tools Appl 74(10):1–13
Ishizuka S., Mukai T., Kakeya H. (2014) Viewing zone of an autostereoscopic display with a directional backlight using a convex lens array. J Electron Imaging 23 (1):011002
Ito T (2002) Holographic reconstruction with a 10-mm pixel-pitch reflective liquid-crystal display by use of a light-emitting diode reference light. Opt Lett 27 (16):1406–1408
Jones A, McDowall L, Yamada H, Bolas M, Debevec P (2007) Rendering for an interactive 360∘ light field display. ACM Trans Graph 26(3):40:1–10
Jorke H, Simon A, Fritz M (2008) Advanced stereo projection using interference filters. In: Proceedings of 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, pp 177– 180
Joseph J (2010) Applications of holography in fluid mechanics and particle dynamics. Annu Rev Fluid Mech 42(1):531–555
Kim MK (2010) Principles and techniques of digital holographic microscopy. J Photonics Energy 1:018005:1–018005:50
Kimura H, Uchiyama T, Yoshikawa H (2006) Laser produced 3D display in the air. In: ACM SIGGRAPH Emerging Technologies, p 20
Klug M, Burnett T, Fancello A, Heath A, Gardner K, O’Connell S, Newswanger C (2013) A scalable, collaborative, interactive light-field display system. SID Symposium Digest of Technical Papers 44:412–415
Kluge MA, Grant BC, Friend L, Glick L (2010) Seeing is believing: telling the ‘inside’ story of a beginning masters athlete through film. Qualitative Research in Sport and Exercise 2(2):282– 292
Ko K, Webster JM (1995) Holographic imaging of human brain preparations — A step toward virtual medicine. Surg Neurol 44(5):428–432
Korevaar EJ, Spivey B Three dimensional display apparatus, November 14 1989. US Patent 4,881,068
Leister N, Schwerdtner A, Fütterer G, Buschbeck S, Olaya J-C, Flon S (2008) Full-color interactive holographic projection system for large 3D scene reconstruction
Light Blue Optics. http://lightblueoptics.com/, Accessed April 19, 2014
Lightspace. http://www.lightspacetech.com, Accessed April 19, 2014
Liu J, Liu Y, Qi H, Wang Z, Zhang Z (2015) 3D video rendering adaptation: a survey. 3D Research 6(1):1–13
Liu X, Xu H (2011) Spatial three-dimensional display based on the light-field reconstruction. Acta Optica Sinica 31(9):0900121:1–5
Lohmann AW, Paris DP (1967) Binary fraunhofer holograms, generated by computer. Appl Opt 6(10):1739–1748
Lucente M, Hilaire PS, Benton SA, Arias DL, Watlington JA (1992) New approaches to holographic video. In: Proceedings of SPIE, Holographics International, vol 1732, pp 377–386
Lyncée tec. http://www.lynceetec.com/, Accessed November 11, 2014
Mölder A, Sebesta M, Gustafsson M, Gisselson L, Wingren AG, Alm K (2008) Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography. Microscopy 232(2):240–247
Miku. http://en.wikipedia.org/wiki/Hatsune_Miku, Accessed April 19, 2014
Musion Eyeliner. http://www.eyeliner3d.com/, Accessed April 17, 2014
Nayar SK, Anand VN (2007) 3D display using passive optical scatterers. Computer 40(7):54–63
Nicola SD, Finizio A, Pierattini G, Javidi B, Coppola G, Striano V (2005) Extended focused image in microscopy by digital holography. Opt Soc Am 13(18):6738–6749
Nolte DD (2012) Optical interferometry for biology and medicine
Ozcan A, Isikman S, Mudanyali O, Tseng D, Sencan I (2010) Lensfree on-chip holography facilitates novel microscopy applications. SPIE Newsroom:002947
Pastoor S, Wöpking M (1997) 3-D displays: a review of current technologies. Displays 17(2):100– 110
Pepper’s ghost. http://en.wikipedia.org/wiki/Pepper’s_ghost, Accessed April 17, 2014
Phase Holographic Imaging. http://www.phiab.se/, Accessed November 11, 2014
Polarized 3D system. http://en.wikipedia.org/wiki/Polarized_3D_system#Linearly_polarized_glasses, Accessed May 4, 2015
Rakkolainen I, Hölerer T, DiVerdi S, Olwal A (2009) Mid-air display experiments to create novel user interfaces. Multimed Tools Appl 44(3):389–405
Ray Z (2012) 3-D revolution: the history of modern stereoscopic cinema
RealView. http://www.realviewimaging.com/, Accessed April 19, 2014
Refai HH, Melnik G, Willner. M (2013) CSpace high-resolution volumetric 3D display. In: Proceedings of SPIE, Three-Dimensional Imaging, Visualization, and Display, vol 8738, pp 11:1– 11:8
Reichelt S, Häussler R, Fütterer G, Leister N (2010) Depth cues in human visual perception and their realization in 3D displays. In: Proceedings of SPIE, Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV, vol 7690, pp 76900B:1–12
RGB. http://en.wikipedia.org/wiki/RGB_color_space, Accessed April 18, 2014
Rogers WL, Jones LW, Beierwaltes WH (1973) Imaging in nuclear medicine with incoherent holography. Opt Eng 12(1):13–22
Rollmann W (1800) Zwei neue stereoskopische methoden. Annalen der Physik 166(9):186– 187
Sando Y, Itoh M, Yatagai T (2003) Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real existing objects. Opt Lett 28(24):2518– 2520
Schipper RJ, Coddington JL Three-dimensional display, July 9 1963. US Patent 3,097,261
Shankar PM, Gupta SN, Gupta HM (1982) Applications of coherent optics and holography in biomedical engineering. IEEE Trans Biomed Eng BME-29(1):8–15
Smalley DE, Smithwick QYJ, Bove Jr. VM, Barabas J, Jolly S (2013) Anisotropic leaky-mode modulator for holographic video displays. Nature 498:313–317
Spatial light modulator (SLM). http://en.wikipedia.org/wiki/Spatial_light_modulator, Accessed April 17, 2014
Stadelmaier A, Massig JH (2000) Compensation of lens aberrations in digital holography. Opt Lett 25(22):1630–1632
Sullivan A (2004) DepthCube solid-state 3D volumetric display. In: Proceedings of SPIE, Stereoscopic Displays and Virtual Reality Systems XI, vol 5291, pp 279–284
Sung Y, Choi W, Fang-Yen C, Badizadegan K, Dasari RR, Feld MS (2010) Optical diffraction tomography for high resolution live cell imaging. Opt Express 17(1):266– 277
SuperD. http://www.superd.com.cn/en/, Accessed April 19, 2014
Turinsky AL, Fanea E, Trinh Q, Wat S, HallgrÄ-msson B, Dong X, Shu X, Stromer JN, Hill JW, Edwards C, Grosenick B, Yajima M, Sensen CW (2008) CAVEman: standardized anatomical context for biomedical data mapping. Anat Sci Educ 1(1):10–18
Turney B (2007) Anatomy in a modern medical curriculum. Ann R Coll Surg Engl 89(2):104–107
Virtual Concert. http://en.wikipedia.org/wiki/Virtual_concert, Accessed October 28, 2014
Vision optics GmbH Chemnitz. http://www.visionoptics.de/index.php?id=8&L=1, Accessed April 17, 2014
Visser HD, Watson MO, Salvado O, Passenger JD (2011) Progress in virtual reality simulators for surgical training and certification. Med J Aust 194 (4):S38–S40
Wang JJ, Walters F, Liu X, Sciortino P, Deng X (2007) High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids. Appl Phys Lett 90(6):1– 3
Waters JP (1966) Holographic image synthesis utlizing theoratical methods. Appl Phys Lett 9(11):405–407
Waterston SW, Stewart IJ (2005) Survey of clinicians’ attitudes to the anatomical teaching and knowledge of medical students. Clin Anat 18(5):380–384
Woodgate GJ, Harrold J, Jacobs AMS, Moseley RR, Ezra D (2000) Flat-panel autostereoscopic displays: characterization and enhancement. In: Proceedings of SPIE, Stereoscopic Displays and Virtual Reality Systems VII, vol 3957, pp 153–164
XpanD. http://www.xpand.me/products/universal-3d-glasses-x103/, Accessed April 21, 2014
XpanD3D. http://en.wikipedia.org/wiki/XpanD_3D, Accessed April 21, 2014
Yagi A, Imura M, Kuroda Y, 360° fog projection interactive display O. Oshiro. (2011). In: SIGGRAPH Asia Emerging Technologies, pp 19:1–1
Yan C, Liu X, Li H, Xia X, Lu H, Zheng W (2009) Color three-dimensional display with omnidirectional view based on a light-emitting diode projector. Appl Opt 48(22):4490– 4495
Yaras F, Kang H, Onural L (2010) State of the art in holographic displays: a survey. J Disp Technol 6(10):443–454
Acknowledgments
This work was supported by the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia, through the International Research Group Program under Grant IRG14-30.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, L., Dong, H., Alelaiwi, A. et al. See in 3D: state of the art of 3D display technologies. Multimed Tools Appl 75, 17121–17155 (2016). https://doi.org/10.1007/s11042-015-2981-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-015-2981-y
Keywords
- 3D movie
- On-stage hologram
- Computer-generated hologram
- Volumetric display
- Survey