Advertisement

Multimedia Tools and Applications

, Volume 75, Issue 24, pp 17121–17155 | Cite as

See in 3D: state of the art of 3D display technologies

  • Lin Yang
  • Haiwei Dong
  • Abdulhameed Alelaiwi
  • Abdulmotaleb El Saddik
Article

Abstract

With advances in lasers, optics, and electronics, many new 3D display technologies have been proposed with prototypes in research labs or have entered the marketplace. Although some of these technologies (such as Stereoscopy) are familiar to people, other technologies, such as holography, remain far-fetched to most. This survey introduces the principles of current popular 3D display technologies, which are generally categorized into four categories: 3D movies, on-stage holograms, holographic projections and volumetric 3D displays. Furthermore, the limitations of each of the aforementioned technologies are deeply analyzed, and comparisons of these technologies are provided. Moreover, we note appropriate application situations for the various technologies. Because computer-generated hologram (CGH) technologies are considered to be the next generation of 3D display technology and have become a dominant direction in 3D display technology development, we address the challenges that CGH is currently facing and provide an insightful analysis of solutions proposed in recent years. Finally, we study the current 3D display applications associated with the four categorized technology principles.

Keywords

3D movie On-stage hologram Computer-generated hologram Volumetric display Survey 

Notes

Acknowledgments

This work was supported by the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia, through the International Research Group Program under Grant IRG14-30.

References

  1. 1.
    4Deep inwater imaging. http://4-deep.com/, Accessed November 11, 2014
  2. 2.
    Active8-3D. http://www.activ8-3d.co.uk/, Accessed April 17, 2014
  3. 3.
    Adhya S, Noé J (2007) A complete ray-trace analysis of the mirage toy. In: Proceedings of SPIE, Education and Training in Optics and PhotonicsGoogle Scholar
  4. 4.
    Benzie P, Watson J, Surman P, Rakkolainen I, Hopf K, Urey H, Sainov V, von Kopylow C (2007) A survey of 3DTV displays: techniques and technologies. IEEE Trans Circuits Syst Video Technol 17(11):1647–1658CrossRefGoogle Scholar
  5. 5.
    Berkela CV, Clarke JA (1997) Characterisation and optimisation of 3D-LCD module design. In: Proceedings of SPIE, Stereoscopic Displays and Virtual Reality Systems IV, vol 3012, pp 179– 186Google Scholar
  6. 6.
    Bosch A, Koning A, Meijboom F, McGhie J, Simoons M, Spek P, Bogers A (2005) Dynamic 3D echocardiography in virtual reality. Cardiovasc Ultrasound 3(1):1–4CrossRefGoogle Scholar
  7. 7.
    Buckley E (2011) Holographic laser projection. J Displ Technol 7(3):135–140MathSciNetCrossRefGoogle Scholar
  8. 8.
    Butler A, Hilliges O, Izadi S, Hodges S, Molyneaux D, Kim D, Kong D (2011) Vermeer: direct interaction with a 360 viewable 3D displayGoogle Scholar
  9. 9.
    Campos P, Sugand K, Mirza K (2013) Holography in clinical anatomy education: a systematic review. Int J Surg 11(8):706CrossRefGoogle Scholar
  10. 10.
    Colomb T, Montfort F, Kühn J, Aspert N, Cuche E, Marian A, Charrière F, Bourquin S, Marquet P, Depeursinge C (2006) Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy. J Opt Soc Am A 23(12):3177–3190CrossRefGoogle Scholar
  11. 11.
    Computer-generated-holography. http://en.wikipedia.org/wiki/Computer-generated_holography, Accessed April 17, 2014
  12. 12.
    Dispair. http://displair.com/, Accessed April 17, 2014
  13. 13.
    Dodgson NA (2005) Autostereoscopic 3D displays. Computer 38(8):31–36CrossRefGoogle Scholar
  14. 14.
    Dong H, Luo Z, Nagano A, Mavridis N (2012) An adaptive treadmill-style locomotion interface and its application in 3D interactive virtual market system. J Intell Serv Robot 5(3):159–167CrossRefGoogle Scholar
  15. 15.
    Dong H, Oshiumi T, Nagano A, Luo Z (2010) Development of a 3D interactive virtual market system with adaptive treadmill control. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5238–5244Google Scholar
  16. 16.
    Dorval RK, Thomas M, Bareau JL (2003) Volumetric three-dimensional display systemGoogle Scholar
  17. 17.
    Dubois F, Schockaert C, Callens N, Yourassowsky C (2006) Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt Express 14(13):5895–5908CrossRefGoogle Scholar
  18. 18.
    Emre J, Andrei M, Vincenzo Q, Yuzhong P, R.J. HM (2005) Medicine Meets Virtual Reality 14: Accelerating Change in Healthcare, Next Medical ToolkitGoogle Scholar
  19. 19.
    Erik C (2002) Holographic projection screenGoogle Scholar
  20. 20.
    Fattal D, Peng Z, Tran T, Vo S, Fiorentino M, Brug J, Beausoleil RG (2013) A multi-directional backlight for a wide-angle, glasses-free 3D display. In: Proceedings of 2013 IEEE Photonics Conference, pp 24–25Google Scholar
  21. 21.
    Favalora GE (2005) Volumetric 3D displays and application infrastructure. Computer 38(8):37–44CrossRefGoogle Scholar
  22. 22.
    Feleppa EJ (1972) Holography and medicine. IEEE Trans Biomed Eng 19 (3):194–205CrossRefGoogle Scholar
  23. 23.
    Fernando A, Ekmekcioglu E, Worrall S (2013) 3DTV: processing and transmission of 3D video signalsGoogle Scholar
  24. 24.
    Frere C, Leseberg D, Bryngdahl O (1986) Computer-generated holograms of three-dimensional objects composed of line segments. Opt Soc Am 3(5):726–730CrossRefGoogle Scholar
  25. 25.
    Gabor D (1948) A new microscopic principle. Nature 161(4098):777–778CrossRefGoogle Scholar
  26. 26.
    Gabor D (1949) Microscopy by reconstructed wave-fronts. In: Proceedings of the Royal Society of London A: Mathematical Physical and Engineering Sciences, vol 197, pp 454–487Google Scholar
  27. 27.
    Gabor D (1951) Microscopy by reconstructed wave fronts: II. In: Proceedings of the Physical Society, Section B, vol 64, p 449Google Scholar
  28. 28.
    Gabor D (1972) Holography, 1948–1971. Science 177(4046):299–313CrossRefGoogle Scholar
  29. 29.
    Geng J (2008) Volumetric 3D display for radiation therapy planning. Displ Technol 4(4):437–450CrossRefGoogle Scholar
  30. 30.
    Gershun A, Moon PH, Timoshenko G (1939) The light fieldGoogle Scholar
  31. 31.
    Greguss P (1975) Thoughts on the future of holography in biology and medicine. Opt Laser Technol 7(6):253–257CrossRefGoogle Scholar
  32. 32.
    Greguss P (1976) Holographic interferometry in biomedical sciences. Opt Laser Technol 8(4):153–159CrossRefGoogle Scholar
  33. 33.
    Halle MW (1994) Holographic stereograms as discrete imaging systems. In: Proceedings of SPIE, Practical Holography VIII, vol 2176, pp 73–84Google Scholar
  34. 34.
    Han F, Xu T, Tian C, Hou Z (2010) Investigation on human visual response latency. In: Proceedings of 2010 International Conference on Computer Design and Applications, vol 1, pp 602– 604Google Scholar
  35. 35.
    Harper G (2010) Holography projects for the evil geniusGoogle Scholar
  36. 36.
    Hattori T, Ishigaki T, Shimamoto K, Sawaki A, Ishiguchi T, Kobayashi H (1999) Advanced autostereoscopic display for G-7 pilot project. In: Proceedings of SPIE, Stereoscopic Displays and Virtual Reality Systems VI, vol 3639, pp 66–75Google Scholar
  37. 37.
    Holliman NS, Dodgson NA, Favalora GE, Pockett L (2011) Three-dimensional displays: a review and applications analysis. IEEE Trans Broadcast 57(2):362–371CrossRefGoogle Scholar
  38. 38.
    Holopro. http://www.holopro.com/en/home.html, Accessed April 19, 2014
  39. 39.
    Horobin R, Kiernan J (eds) (2002) Conn’s Biological Stains: A Handbook of Dyes, Stains and Fluorochromes for Use in Biology and MedicineGoogle Scholar
  40. 40.
    Huebschman ML, Munjuluri B, Garner HR (2003) Dynamic holographic 3-D image projection. Opt Express 11(5):437–445CrossRefGoogle Scholar
  41. 41.
    Im HJ, Lee BJ, Hong HK, Shin HH (2010) Auto-stereoscopic 60 view 3D using slanted lenticular lens arrays. Journal of Information Display 8(4):23–26CrossRefGoogle Scholar
  42. 42.
    Im K, Lee S, Park S (2015) A personalized display technology integrating the technologies of bio-signal measurements and multi-view 3D display. Multimed Tools Appl 74(10):1–13CrossRefGoogle Scholar
  43. 43.
    Ishizuka S., Mukai T., Kakeya H. (2014) Viewing zone of an autostereoscopic display with a directional backlight using a convex lens array. J Electron Imaging 23 (1):011002CrossRefGoogle Scholar
  44. 44.
    Ito T (2002) Holographic reconstruction with a 10-mm pixel-pitch reflective liquid-crystal display by use of a light-emitting diode reference light. Opt Lett 27 (16):1406–1408CrossRefGoogle Scholar
  45. 45.
    Jones A, McDowall L, Yamada H, Bolas M, Debevec P (2007) Rendering for an interactive 360 light field display. ACM Trans Graph 26(3):40:1–10CrossRefGoogle Scholar
  46. 46.
    Jorke H, Simon A, Fritz M (2008) Advanced stereo projection using interference filters. In: Proceedings of 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, pp 177– 180Google Scholar
  47. 47.
    Joseph J (2010) Applications of holography in fluid mechanics and particle dynamics. Annu Rev Fluid Mech 42(1):531–555CrossRefGoogle Scholar
  48. 48.
    Kim MK (2010) Principles and techniques of digital holographic microscopy. J Photonics Energy 1:018005:1–018005:50Google Scholar
  49. 49.
    Kimura H, Uchiyama T, Yoshikawa H (2006) Laser produced 3D display in the air. In: ACM SIGGRAPH Emerging Technologies, p 20Google Scholar
  50. 50.
    Klug M, Burnett T, Fancello A, Heath A, Gardner K, O’Connell S, Newswanger C (2013) A scalable, collaborative, interactive light-field display system. SID Symposium Digest of Technical Papers 44:412–415CrossRefGoogle Scholar
  51. 51.
    Kluge MA, Grant BC, Friend L, Glick L (2010) Seeing is believing: telling the ‘inside’ story of a beginning masters athlete through film. Qualitative Research in Sport and Exercise 2(2):282– 292CrossRefGoogle Scholar
  52. 52.
    Ko K, Webster JM (1995) Holographic imaging of human brain preparations — A step toward virtual medicine. Surg Neurol 44(5):428–432CrossRefGoogle Scholar
  53. 53.
    Korevaar EJ, Spivey B Three dimensional display apparatus, November 14 1989. US Patent 4,881,068Google Scholar
  54. 54.
    Leister N, Schwerdtner A, Fütterer G, Buschbeck S, Olaya J-C, Flon S (2008) Full-color interactive holographic projection system for large 3D scene reconstructionGoogle Scholar
  55. 55.
    Light Blue Optics. http://lightblueoptics.com/, Accessed April 19, 2014
  56. 56.
    Lightspace. http://www.lightspacetech.com, Accessed April 19, 2014
  57. 57.
    Liu J, Liu Y, Qi H, Wang Z, Zhang Z (2015) 3D video rendering adaptation: a survey. 3D Research 6(1):1–13CrossRefGoogle Scholar
  58. 58.
    Liu X, Xu H (2011) Spatial three-dimensional display based on the light-field reconstruction. Acta Optica Sinica 31(9):0900121:1–5Google Scholar
  59. 59.
    Lohmann AW, Paris DP (1967) Binary fraunhofer holograms, generated by computer. Appl Opt 6(10):1739–1748CrossRefGoogle Scholar
  60. 60.
    Lucente M, Hilaire PS, Benton SA, Arias DL, Watlington JA (1992) New approaches to holographic video. In: Proceedings of SPIE, Holographics International, vol 1732, pp 377–386Google Scholar
  61. 61.
    Lyncée tec. http://www.lynceetec.com/, Accessed November 11, 2014
  62. 62.
    Mölder A, Sebesta M, Gustafsson M, Gisselson L, Wingren AG, Alm K (2008) Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography. Microscopy 232(2):240–247MathSciNetCrossRefGoogle Scholar
  63. 63.
    Miku. http://en.wikipedia.org/wiki/Hatsune_Miku, Accessed April 19, 2014
  64. 64.
    Musion Eyeliner. http://www.eyeliner3d.com/, Accessed April 17, 2014
  65. 65.
    Nayar SK, Anand VN (2007) 3D display using passive optical scatterers. Computer 40(7):54–63CrossRefGoogle Scholar
  66. 66.
    Nicola SD, Finizio A, Pierattini G, Javidi B, Coppola G, Striano V (2005) Extended focused image in microscopy by digital holography. Opt Soc Am 13(18):6738–6749Google Scholar
  67. 67.
    Nolte DD (2012) Optical interferometry for biology and medicineGoogle Scholar
  68. 68.
    Ozcan A, Isikman S, Mudanyali O, Tseng D, Sencan I (2010) Lensfree on-chip holography facilitates novel microscopy applications. SPIE Newsroom:002947Google Scholar
  69. 69.
    Pastoor S, Wöpking M (1997) 3-D displays: a review of current technologies. Displays 17(2):100– 110CrossRefGoogle Scholar
  70. 70.
    Pepper’s ghost. http://en.wikipedia.org/wiki/Pepper’s_ghost, Accessed April 17, 2014
  71. 71.
    Phase Holographic Imaging. http://www.phiab.se/, Accessed November 11, 2014
  72. 72.
  73. 73.
    Rakkolainen I, Hölerer T, DiVerdi S, Olwal A (2009) Mid-air display experiments to create novel user interfaces. Multimed Tools Appl 44(3):389–405CrossRefGoogle Scholar
  74. 74.
    Ray Z (2012) 3-D revolution: the history of modern stereoscopic cinemaGoogle Scholar
  75. 75.
    RealView. http://www.realviewimaging.com/, Accessed April 19, 2014
  76. 76.
    Refai HH, Melnik G, Willner. M (2013) CSpace high-resolution volumetric 3D display. In: Proceedings of SPIE, Three-Dimensional Imaging, Visualization, and Display, vol 8738, pp 11:1– 11:8Google Scholar
  77. 77.
    Reichelt S, Häussler R, Fütterer G, Leister N (2010) Depth cues in human visual perception and their realization in 3D displays. In: Proceedings of SPIE, Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV, vol 7690, pp 76900B:1–12Google Scholar
  78. 78.
    RGB. http://en.wikipedia.org/wiki/RGB_color_space, Accessed April 18, 2014
  79. 79.
    Rogers WL, Jones LW, Beierwaltes WH (1973) Imaging in nuclear medicine with incoherent holography. Opt Eng 12(1):13–22CrossRefGoogle Scholar
  80. 80.
    Rollmann W (1800) Zwei neue stereoskopische methoden. Annalen der Physik 166(9):186– 187CrossRefGoogle Scholar
  81. 81.
    Sando Y, Itoh M, Yatagai T (2003) Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real existing objects. Opt Lett 28(24):2518– 2520CrossRefGoogle Scholar
  82. 82.
    Schipper RJ, Coddington JL Three-dimensional display, July 9 1963. US Patent 3,097,261Google Scholar
  83. 83.
    Shankar PM, Gupta SN, Gupta HM (1982) Applications of coherent optics and holography in biomedical engineering. IEEE Trans Biomed Eng BME-29(1):8–15CrossRefGoogle Scholar
  84. 84.
    Smalley DE, Smithwick QYJ, Bove Jr. VM, Barabas J, Jolly S (2013) Anisotropic leaky-mode modulator for holographic video displays. Nature 498:313–317CrossRefGoogle Scholar
  85. 85.
    Spatial light modulator (SLM). http://en.wikipedia.org/wiki/Spatial_light_modulator, Accessed April 17, 2014
  86. 86.
    Stadelmaier A, Massig JH (2000) Compensation of lens aberrations in digital holography. Opt Lett 25(22):1630–1632CrossRefGoogle Scholar
  87. 87.
    Sullivan A (2004) DepthCube solid-state 3D volumetric display. In: Proceedings of SPIE, Stereoscopic Displays and Virtual Reality Systems XI, vol 5291, pp 279–284Google Scholar
  88. 88.
    Sung Y, Choi W, Fang-Yen C, Badizadegan K, Dasari RR, Feld MS (2010) Optical diffraction tomography for high resolution live cell imaging. Opt Express 17(1):266– 277CrossRefGoogle Scholar
  89. 89.
    SuperD. http://www.superd.com.cn/en/, Accessed April 19, 2014
  90. 90.
    Turinsky AL, Fanea E, Trinh Q, Wat S, HallgrÄ-msson B, Dong X, Shu X, Stromer JN, Hill JW, Edwards C, Grosenick B, Yajima M, Sensen CW (2008) CAVEman: standardized anatomical context for biomedical data mapping. Anat Sci Educ 1(1):10–18CrossRefGoogle Scholar
  91. 91.
    Turney B (2007) Anatomy in a modern medical curriculum. Ann R Coll Surg Engl 89(2):104–107CrossRefGoogle Scholar
  92. 92.
    Virtual Concert. http://en.wikipedia.org/wiki/Virtual_concert, Accessed October 28, 2014
  93. 93.
    Vision optics GmbH Chemnitz. http://www.visionoptics.de/index.php?id=8&L=1, Accessed April 17, 2014
  94. 94.
    Visser HD, Watson MO, Salvado O, Passenger JD (2011) Progress in virtual reality simulators for surgical training and certification. Med J Aust 194 (4):S38–S40Google Scholar
  95. 95.
    Wang JJ, Walters F, Liu X, Sciortino P, Deng X (2007) High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids. Appl Phys Lett 90(6):1– 3Google Scholar
  96. 96.
    Waters JP (1966) Holographic image synthesis utlizing theoratical methods. Appl Phys Lett 9(11):405–407CrossRefGoogle Scholar
  97. 97.
    Waterston SW, Stewart IJ (2005) Survey of clinicians’ attitudes to the anatomical teaching and knowledge of medical students. Clin Anat 18(5):380–384CrossRefGoogle Scholar
  98. 98.
    Woodgate GJ, Harrold J, Jacobs AMS, Moseley RR, Ezra D (2000) Flat-panel autostereoscopic displays: characterization and enhancement. In: Proceedings of SPIE, Stereoscopic Displays and Virtual Reality Systems VII, vol 3957, pp 153–164Google Scholar
  99. 99.
  100. 100.
    XpanD3D. http://en.wikipedia.org/wiki/XpanD_3D, Accessed April 21, 2014
  101. 101.
    Yagi A, Imura M, Kuroda Y, 360° fog projection interactive display O. Oshiro. (2011). In: SIGGRAPH Asia Emerging Technologies, pp 19:1–1Google Scholar
  102. 102.
    Yan C, Liu X, Li H, Xia X, Lu H, Zheng W (2009) Color three-dimensional display with omnidirectional view based on a light-emitting diode projector. Appl Opt 48(22):4490– 4495CrossRefGoogle Scholar
  103. 103.
    Yaras F, Kang H, Onural L (2010) State of the art in holographic displays: a survey. J Disp Technol 6(10):443–454CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Multimedia Computing Research Laboratory, School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada
  2. 2.Department of Software Engineering, College of Computer and Information SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations