A fusion method for robust face tracking


Face tracking often encounters drifting problems, especially when a significant face appearance variation occurs. Many trackers suffer from the difficulty of facial feature extraction during a wide range of face turning, occlusion, and even invisibleness. In this paper, we propose a novel and efficient fusion strategy for robust face tracking. A Supervised Descent Method (SDM) and a Compressive Tracking method (CT) are employed at the same time. SDM is used to correct drifting errors of CT continuously during frontal face tracking. However, when the face orientation changes to the angle orthogonal to the view line, it results in tracking failure for the SDM method. CT is then adopted to keep the face region being tracked until SDM detects and tracks the face again. In the experiments, we test the proposed method for real-time tracking using several challenging sequences from recent literatures. The fusion strategy has achieved encouraging performance in terms of both efficiency and reliability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  2. 2.

    Candes EJ, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Candes EJ, Tao T (2006) Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inf Theory 52(12):5406–5425

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Demirkus M, Clark JJ, Arbel T (2014) Robust semi-automatic head pose labeling for real-world face video sequences. Multimed Tools Appl 70(1):495–523

    Article  Google Scholar 

  5. 5.

    Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. Comput Vis Eccv 5302:234–247, Pt I, Proceedings

    Google Scholar 

  7. 7.


  8. 8.

    Hu CL et al (2014) An effective head pose estimation approach using Lie Algebrized Gaussians based face representation. Multimed Tools Appl 73(3):1863–1884

    Article  Google Scholar 

  9. 9.

    Huang C et al (2007) High-performance rotation invariant multiview face detection. IEEE Trans Pattern Anal Mach Intell 29(4):671–686

    Article  Google Scholar 

  10. 10.

    Jones MVP (2003) Fast multi-view face detection. Technical Report TR2003-96, Mitsubishi Electric Research Laboratories, Jul. 2003

  11. 11.

    Kaneko T, Hori O (2002) Template update criterion for template matching of image sequences. 16th International Conference on Pattern Recognition, Vol Ii, Proceedings, 1–5

  12. 12.

    Li HX, Shen CH, Shi QF (2011) Real-time visual tracking using compressive sensing. 2011 I.E. Conf Comput Vis Pattern Recogn (Cvpr), 1305–1312

  13. 13.

    Matthews I, Ishikawa T, Baker S (2004) The template update problem. IEEE Trans Pattern Anal Mach Intell 26(6):810–815

    Article  Google Scholar 

  14. 14.

    Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154

    Article  Google Scholar 

  15. 15.

    Wright J et al (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  16. 16.

    Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. 2013 I.E. Conf Comput Vis Pattern Recogn (Cvpr), 2411–2418

  17. 17.

    Xiong XH, De la Torre F (2013) Supervised descent method and its applications to face alignment. 2013 I.E. Conf Comput Vis Pattern Recogn (Cvpr), 532–539

  18. 18.

    Xu R, Gu XD, Wei BJ (2013) An improved real time compressive tracking. 2013 Second Iapr Asian Conference on Pattern Recognition (Acpr 2013), 2013:692–696

  19. 19.

    Yu H, Liu HH (2014) Regression-based facial expression optimization. IEEE Trans Human-Mach Syst 44(3):386–394

    Article  Google Scholar 

  20. 20.

    Zeisl B, et al (2010) On-line semi-supervised multiple-instance boosting. 2010 I.E. Conf Comput Vis Pattern Recogn (Cvpr), 1879–1886

  21. 21.

    Zhang KH, Zhang L, Yang MH (2012) Real-time compressive tracking. Comput Vis Eccv 7574:864–877, Pt Iii

    Google Scholar 

  22. 22.

    Zhang TZ et al (2012) Low-rank sparse learning for robust visual tracking. Comput Vis Eccv 7577:470–484, Pt Vi

    Google Scholar 

Download references


This work is partially supported by the State Scholarship Fund of China. Y. Lu is supported by the Natural Science Foundation of Heilongjiang Province of China under Grant F201428 and the 12th Five-Year-Plan in Key Science and Technology Research of agricultural bureau in Heilongjiang province of China under Grant HNK125B-04-03.

Author information



Corresponding author

Correspondence to Xiaodong Jiang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Yu, H., Lu, Y. et al. A fusion method for robust face tracking. Multimed Tools Appl 75, 11801–11813 (2016). https://doi.org/10.1007/s11042-015-2659-5

Download citation


  • Fusion algorithm
  • Human face tracking
  • Compressive tracking
  • Supervised descend method