Skip to main content
Log in

Ray tracing-based interactive diffuse indirect illumination

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Despite great efforts in recent years to accelerate global illumination computation, the real-time ray tracing of fully dynamic scenes to support photorealistic indirect illumination effects has yet to be achieved in computer graphics. In this paper, we propose an extended ray tracing model that can be readily implemented on a GPU to facilitate the interactive generation of diffuse indirect illumination, the quality of which is comparable to that generated by the traditional, time-consuming photon mapping method and final gathering. Our method employs three types of (multilevel) grids to represent the indirect light in a scene using a form that facilitates the efficient estimation of the reflected radiance caused by diffuse interreflection. This method includes the mathematical tool of spherical harmonics and a rendering scheme that performs the final gathering step with a minimal cost during ray tracing, which guarantees the interactive frame rates. We evaluated our technique using several dynamic scenes with nontrivial complexity, which demonstrated its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Arikan O, Forsyth D, O’Brien J (2005) Fast and detailed approximate global illumination by irradiance decomposition. ACM T Graphic 24(3):1108–1114

    Article  MATH  Google Scholar 

  2. Crassin C, Neyret F, Sainz M, Green S, Eisemann E (2011) Interactive indirect illumination using voxel cone tracing. Comput Graph Forum 30(7):1921–1930

    Article  Google Scholar 

  3. Dachsbacher C, Stamminger M (2005) Reflective shadow maps. In: Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, pp 203–231

  4. Fabianowski B, Dingliana J (2009) Interactive global photon mapping. Comput Graph Forum 28(4):1151–1159

    Article  Google Scholar 

  5. Gautron P, Křivánek J, Bouatouch K, Pattanaik S (2005) Radiance cache splatting: a GPU-friendly global illumination algorithm. In: Proc. Eurographics Symp. on Rendering, pp 55–64

  6. Green R (2003) Spherical harmonic lighting: The gritty details. In: Proc. GDC

  7. Iwasaki K, Dobashi Y, Yoshimoto F, Nishita T (2007) Precomputed radiance transfer for dynamic scenes taking into account light interreflection. In: Proc. 18th Eurographics Conf. on Rendering Techniques, pp 35–44

  8. Jensen HW (2001) Realistic Image Synthesis Using Photon Mapping. A K Peters, Ltd.

  9. Kaplanyan A, Dachsbacher C (2010) Cascaded light propagation volumes for real-time indirect illumination. In: Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, pp 99–107

  10. Kristensen AW, Akenine-Möller T, Jensen HW (2005) Precomputed local radiance transfer for real-time lighting design. ACM T Graphic 24(3):1208–1215

    Article  Google Scholar 

  11. Křivánek J, Gautron P, Pattanaik S, Bouatouch K (2005) Radiance caching for efficient global illumination computation. IEEE T Vis Comput Gr 11(5):550–561

    Article  Google Scholar 

  12. Larsen B, Christensen N (2004) Simulating photon mapping for real-time applications. In: Proc. Eurographics Symp. on Rendering, pp 123–131

  13. Maletz D, Wang R (2011) Importance point projection for GPU-based final gathering. In: Proc. of Eurographics Symp. on Rendering, pp 1327–1336

  14. Mavridis P, Papaioannou G (2011) Global illumination using imperfect volumes. In: Proc. GRAPP, pp 160–165

  15. McGuire M, Luebke DD (2009) Hardware-accelerated global illumination by image space photon mapping. In: Proc. High Performance Graphics, pp 77–89

  16. Nijasure M, Pattanaik S, Goel V (2004) Real-time global illumination on the GPU. J Graphic Tool 10:55–71

    Article  Google Scholar 

  17. Georgios Papaioannou (2011) Real-time diffuse global illumination using radiance hints. In: Proc. High Performance Graphics, pp 15–24

  18. Purcell T, Donner C, Cammarano M, Jensen H, Hanrahan P (2003) Photon mapping on programmable graphics hardware. In: Proc. Graphics Hardware, pp 41–50

  19. Ritschel T, Dachsbacher C, Grosch T, Kautz J (2012) The state of the art in interactive global illumination. Comput Graph Forum 31(1):160–188

    Article  Google Scholar 

  20. Ritschel T, Engelhardt T, Grosch T, Seidel H-P, Kautz J, Dachsbacher C (2009) Micro-rendering for scalable, parallel final gathering. ACM T GRaphic 28 (132)

  21. Schwarz M, Seidel H-P (2010) Fast parallel surface and solid voxelization on GPUs. ACM T Graphic 9(179):1–179

    Article  Google Scholar 

  22. Sloan P-P (2008) Stupid spherical harmonics tricks

  23. Sloan P-P, Govindaraju NK, Nowrouzezahrai D, Snyder J (2007) Image-based proxy accumulation for real-time soft global illumination. In: Proc. Pacific Graphics ’07, pp 97–105

  24. Sloan P-P, Hall J, Hart J, Snyder J (2003) Clustered principal components for precomputed radiance transfer. ACM T Graphic 22(3):382–391

    Article  Google Scholar 

  25. Sloan P-P, Kautz J, Snyder J (2002) Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM T GraphiC 21(3):527–536

    Article  Google Scholar 

  26. Tabellion E, Lamorlette A (2004) An approximate global illumination system for computer generated films. ACM T Graphic 23(3):469–476

    Article  Google Scholar 

  27. Thiedemann S, Henrich N, Grosch T, Müller S (2011) Voxel-based global illumination. In: Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, 103–110

  28. Umenhoffer T, Szirmay-Kalos L (2007) Robust diffuse final gathering on the GPU. In: Proc. WSCG

  29. Walter B, Fernandez S, Arbree A, Bala K, Donikian M, Greenberg DP (2005) Lightcuts: a scalable approach to illumination. ACM T Graphic 24(3):1098–1107

    Article  Google Scholar 

  30. Wang R, Wang R, Zhou K, Pan M, Bao H (2009) An efficient GPU-based approach for interactive global illumination. ACM T Graphic 28(91)

  31. Ward G, Heckbert P (1992) Irradiance gradients. In: Proc. Eurographics Workshop on Rendering, pp 85–98

  32. Ward G, Rubinstein F, Clear R (1988) A ray tracing solution for diffuse interreflection. In: Proc. ACM SIGGRAPH, pp 85–92

  33. Whitted T (1980) An improved illumination model for shaded display. Commun ACM 23:343–349

    Article  Google Scholar 

  34. Yao C, Wang B, Chan B, Yong J, Paul J-C (2010) Multi-image based photon tracing for interactive global illumination of dynamic scenes. Comput Graph Forum 29:1315–1324

    Article  Google Scholar 

  35. Zhou K, Hou Q, Wang R, Guo B (2008) Real-time KD-tree construction on graphics hardware. ACM T Graphic 27(5):1–11

    Article  Google Scholar 

  36. Zhukov S, Iones A, Kronin G (1998) An ambient light illumination model. In: Proc. Rendering Techniques ’98, pp 45–55

Download references

Acknowledgments

The test scenes are courtesy of J. Helenklaken (Kitchen), M. Dabrovic (Sponza), A. Grynberg and G. Ward (Conference), I. Wald (Ben), and R. Sumner and J. Popovic (Elephant and Horse). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE) (No. 2012R1A1A2008958).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanghun Park or Insung Ihm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, B., Park, S. & Ihm, I. Ray tracing-based interactive diffuse indirect illumination. Multimed Tools Appl 75, 7371–7390 (2016). https://doi.org/10.1007/s11042-015-2655-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2655-9

Keywords

Navigation