Skip to main content
Log in

Moving tracking with approximate topological isomorphism

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Today, tracking of moving objects in video becomes a highlight in multimedia. This paper proposes a novel method, which is suitable for applying on relatively high-resolution videos that moving objects can be distinguished from their color and shape information. This method matches and tracks multiple moving objects in video by extracting and combining multi-features. With the background reconstruction method we proposed, the moving objects are separated as sub images from the background, we first extract some valuable features from each sub image, especially the topological information. Then, features are applied to a strong classifier which is accumulated with weak feature classifiers. After that, by the initial matching of moving objects, we extract their kinematical features to reinforce the matching method. Finally, experimental results show the effectiveness of the novel algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aggarwal JK, Cai Q (1997) Human motion analysis: a review [C] //nonrigid and articulated motion workshop. Proc IEEE IEEE 1997:90–102

    Google Scholar 

  2. Bai Y, Tang M (2014) Robust visual tracking via augmented kernel SVM[J]. Image Vis Comput 32(8):465–475

    Article  Google Scholar 

  3. Chen P, Qian H, Wang W et al (2011) Contour tracking using gaussian particle filter [J]. IET Image Process 5(5):440–447

    Article  Google Scholar 

  4. Chen Q, Sun QS, Heng PA et al (2010) Two-stage object tracking method based on kernel and active contour [J]. Circ Syst Video Tech, IEEE Trans 20(4):605–609

    Article  Google Scholar 

  5. Chorianopoulos K (2013) Collective intelligence within web video [J]. Human-Centric Comput Inf Sci 3(1):1–16

    Article  Google Scholar 

  6. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking [J]. Pattern Anal Mach Int, IEEE Trans 25(5):564–577

    Article  Google Scholar 

  7. Deb K (2014) Multi-objective optimization [M] //Search methodologies. Springer, US, pp 403–449

    Google Scholar 

  8. Einicke GA, White LB (1999) Robust extended Kalman filtering [J]. IEEE Trans Signal Process 47(9):2596–2599

    Article  MathSciNet  MATH  Google Scholar 

  9. Foroughi H, Aski BS (2008) Pourreza H. Intelligent video surveillance for monitoring fall detection of elderly in home environments[C]//Computer and Information Technology, 2008. ICCIT 2008. 11th International Conference on. IEEE: 219–224

  10. Fu W, Xu Z, Liu S et al (2011) The capture of moving object in video image [J]. J Multimed 6(6):518–525

    Google Scholar 

  11. Fu W, Zhou J, Liu S et al (2014) Differential trajectory tracking with automatic learning of background reconstruction [J]. Multimed Tools Appl. doi:10.1007/ s11042-014-2391-6

    Google Scholar 

  12. Godec M, Roth PM, Bischof H (2013) Hough-based tracking of non-rigid objects [J]. Comput Vis Image Underst 117(10):1245–1256

    Article  Google Scholar 

  13. Goswami K, Hong GS, Kim BG (2013) A novel mesh-based moving object detection technique in video sequence [J]. J Converg 4(3):20–24

    Google Scholar 

  14. Hayes GR (2011) The relationship of action research to human-computer interaction [J]. ACM Trans Comput-Human Inter 18(3):15

    Google Scholar 

  15. Huang C, Wang S (2010) A cascaded hierarchical framework for moving object detection and tracking [C] //Image Processing (ICIP), 2010 17th IEEE International Conference on. IEEE: 4629–4632

  16. Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model [C] //Computer Vision and Pattern Recognition (CVPR), 2012 I.E. Conference on. IEEE: 1822–1829

  17. Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation [J]. Proc IEEE 92(3):401–422

    Article  Google Scholar 

  18. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection [J]. Pattern Anal Mach Int, IEEE Trans 34(7):1409–1422

    Article  Google Scholar 

  19. Kalman RE (1960) A new approach to linear filtering and prediction problems [J]. J Fluids Eng 82(1):35–45

    Google Scholar 

  20. Kim DY, Jeon M (2013) Spatio-temporal auxiliary particle filtering with-norm-based appearance model learning for robust visual tracking [J]. Image Proc, IEEE Trans 22(2):511–522

    Article  MathSciNet  Google Scholar 

  21. Kim H, Lee SH, Sohn MK et al (2014) Illumination invariant head pose estimation using random forests classifier and binary pattern run length matrix [J]. Human-Centric Comput Inf Sci 4(1):1–12

    Article  Google Scholar 

  22. Kwak S, Nam W, Han B et al (2011) Learning occlusion with likelihoods for visual tracking [C] //Computer Vision (ICCV), 2011 I.E. International Conference on. IEEE: 1551–1558

  23. Lee Hung Liew LHL, Beng Yong Lee BYL, Beng Yong Lee BYL et al (2013) Aerial images rectification using non-parametric approach [J]. J Converg 4(1):15–22

    Google Scholar 

  24. Li G, Qin L, Huang Q et al (2011) Treat samples differently: Object tracking with semi-supervised online CovBoost [C] //Computer Vision (ICCV), 2011 I.E. International Conference on. IEEE: 627–634

  25. Liu S, Fu W, Zhao W et al (2013) A novel fusion method by static and moving facial capture [J]. Math Probl Eng. doi:10.1155/2013/503924

    Google Scholar 

  26. Liu B, Huang J, Yang L et al (2011) Robust tracking using local sparse appearance model and k-selection [C] //Computer Vision and Pattern Recognition (CVPR), 2011 I.E. Conference on. IEEE: 1313–1320

  27. Mei X, Ling H (2009) Robust visual tracking using L1 minimization [C] //Computer Vision (ICCV), 2009 I.E. 12th International Conference on. IEEE: 1436–1443

  28. Oron S, Bar-Hillel A, Levi D et al (2012) Locally orderless tracking [C] //Computer Vision and Pattern Recognition (CVPR), 2012 I.E. Conference on. IEEE: 1940–1947

  29. Stalder S, Grabner H, Van Gool L (2010) Cascaded confidence filtering for improved tracking-by-detection [M] //Computer vision–ECCV 2010. Springer, Berlin, pp 369–382

    Google Scholar 

  30. Uddin J, Islam R, Kim JM (2014) Texture feature extraction techniques for fault diagnosis of induction motors [J]. J Converg 5(2):15–20

    Google Scholar 

  31. Vezzani R, Cucchiara R (2010) Video surveillance online repository (visor): an integrated framework [J]. Multimed Tools Appl 50(2):359–380

    Article  Google Scholar 

  32. Vipparthi SK, Nagar SK (2014) Color directional local quinary patterns for content based indexing and retrieval [J]. Human-Centric Comput Inf Sci 4(1):1–13

    Article  Google Scholar 

  33. Wang S, Lu H, Yang F et al (2011) Superpixel tracking [C] //Computer Vision (ICCV), 2011 I.E. International Conference on. IEEE: 1323–1330

  34. Wu Y, Ling H, Yu J et al (2011) Blurred target tracking by blur-driven tracker [C] //Computer Vision (ICCV), 2011 I.E. International Conference on. IEEE: 1100–1107

  35. Zhang T, Ghanem B, Liu S et al (2012) Robust visual tracking via multi-task sparse learning[C] //Computer Vision and Pattern Recognition (CVPR), 2012 I.E. Conference on. IEEE: 2042–2049

  36. Zhang X, Hu W, Qu W et al (2010) Multiple object tracking via species-based particle swarm optimization [J]. Circ Syst Video Tech, IEEE Trans 20(11):1590–1602

    Article  Google Scholar 

  37. Zhong W, Lu H, Yang MH (2012) Robust object tracking via sparsity-based collaborative model [C] //Computer Vision and Pattern Recognition (CVPR), 2012 I.E. Conference on. IEEE: 1838–1845

  38. Zhu J, Lao Y, Zheng YF (2010) Object tracking in structured environments for video surveillance applications [J]. Circ Syst Video Tech, IEEE Trans 20(2):223–235

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China [No. 61262082, 61461039], Key Project of Chinese Ministry of Education [No.212025], Inner Mongolia Science Foundation for Distinguished Young Scholars [2012JQ03], Program of Higher-level talents of Inner Mongolia University [125130], Postgraduate Scientific Research Innovation Foundation of Inner Mongolia [B20141012610Z].

The authors would like to express their heartfelt gratitude to all the volunteers in the experiments and the anonymous reviewers, for their help on this paper.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiantao Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, W., Zhou, J. & Ma, Y. Moving tracking with approximate topological isomorphism. Multimed Tools Appl 75, 15553–15570 (2016). https://doi.org/10.1007/s11042-015-2519-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2519-3

Keywords

Navigation