Skip to main content
Log in

Non-rigid visual object tracking using user-defined marker and Gaussian kernel

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A novel non-rigid object tracking based on interactive user-define marker and superpixel Gaussian kernel is proposed in this paper. In the initialization stage, instead of using the traditional bounding box to locate the targeted object, we have employed an interactive segmentation with user-defined marker to segment the object accurately in the first frame of the input video to avoid the background influence in the traditional bounding box. During the tracking stage, by using a Gaussian kernel as movement constraint, each superpixel is tracked independently to locate the object in the next frame. Experimental results show that the proposed method compared to state of the art methods can achieve better robustness and accuracy for various challenging video clips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Article  Google Scholar 

  2. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 545–548

  3. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271

    Article  Google Scholar 

  4. Babenko B, Ming-Hsuan Y, Belongie S (2009) Visual tracking with online multiple instance learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 983–990

  5. Bohyung H, Davis L (2005) On-line density-based appearance modeling for object tracking. In: Proceedings of IEEE international conference on computer vision, pp 1492–1499

  6. Cehovin L, Kristan M, Leonardis A (2011) An adaptive coupled-layer visual model for robust visual tracking. In: Proceedings of IEEE international conference on computer vision, pp. 1363–1370

  7. Cehovin L, Kristan M, Leonardis A (2013) Robust visual tracking using an adaptive coupled-layer visual model. IEEE Trans Pattern Anal Mach Intell 35(4):941–953

    Article  Google Scholar 

  8. Collins RT, Yanxi L (2003) On-line selection of discriminative tracking features. In: Proceedings of IEEE international conference on computer vision, pp 346–352

  9. Collins RT, Yanxi L, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27(10):1631–1643

    Article  Google Scholar 

  10. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  11. Fan Y, Huchuan L, Ming-Hsuan Y (2014) Robust superpixel tracking. IEEE Trans Image Process 23(4):1639–1651

    Article  MathSciNet  Google Scholar 

  12. Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645

    Article  Google Scholar 

  13. Godec M, Roth P M, Bischof H (2011) Hough-based tracking of non-rigid objects. In: Proceedings of IEEE international conference on computer vision, pp 81–88

  14. Han B, Zhu Y, Comaniciu D, Davis LS (2009) Visual tracking by continuous density propagation in sequential Bayesian filtering framework. IEEE Trans Pattern Anal Mach Intell 31(5):919–930

    Article  Google Scholar 

  15. Jepson AD, Fleet D J, El-Maraghi TR (2001) Robust online appearance models for visual tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp I-415-I-422

  16. Jung C, Jian M, Liu J, Jiao L, Shen Y (2014) Interactive image segmentation via kernel propagation. Pattern Recogn 47(8):2745–2755

    Article  Google Scholar 

  17. Junseok K, Kyoung Mu L (2013) Highly nonrigid object tracking via patch-based dynamic appearance modeling. IEEE Trans Pattern Anal Mach Intell 35(10):2427–2441

    Article  Google Scholar 

  18. Junseok K, Kyoung-Mu L (2009) Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping Monte Carlo sampling. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1208–1215

  19. Junseok K, Kyoung-Mu L (2010) Visual tracking decomposition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1269–1276

  20. Kalal Z, Matas J, Mikolajczyk K (2010) P-N learning: Bootstrapping binary classifiers by structural constraints. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 49–56

  21. Kumar Mallapragada P, Rong J, Jain AK, Yi L (2009) SemiBoost: boosting for semi-supervised learning. IEEE Trans Pattern Anal Mach Intell 31(11):2000–2014

    Article  Google Scholar 

  22. Mazinan AH, Amir-Latifi A (2013) A new algorithm to rigid and non-rigid object tracking in complex environments. Int J Adv Manuf Technol 64(9–12):1643–1651

    Article  Google Scholar 

  23. Ming Y, Ying W (2005) Tracking non-stationary appearances and dynamic feature selection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1059–1066

  24. Ning J, Zhang L, Zhang D, Wu C (2010) Interactive image segmentation by maximal similarity based region merging. Pattern Recogn 43(2):445–456

    Article  MATH  Google Scholar 

  25. Noma A, Graciano ABV, Cesar RM Jr, Consularo LA, Bloch I (2012) Interactive image segmentation by matching attributed relational graphs. Pattern Recogn 45(3):1159–1179

    Article  Google Scholar 

  26. Nummiaro K, Koller-Meier E, Van Gool L (2003) An adaptive color-based particle filter. Image Vis Comput 21(1):99–110

    Article  MATH  Google Scholar 

  27. Protiere A, Sapiro G (2007) Interactive image segmentation via adaptive weighted distances. IEEE Trans Image Process 16(4):1046–1057

    Article  MathSciNet  Google Scholar 

  28. Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141

    Article  Google Scholar 

  29. Rother C, Kolmogorov V, Blake A (2004) “GrabCut”: interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23(3):309–314

    Article  Google Scholar 

  30. Saffari A, Leistner C, Santner J, Godec M, Bischof H (2009) On-line random forests. In: Proceedings of IEEE international conference on computer vision, pp 1393–1400

  31. Shu W, Huchuan L, Fan Y, Ming-Hsuan Y (2011) Superpixel tracking. In: Proceedings of IEEE international conference on computer vision, pp 1323–1330

  32. Xue M, Haibin L (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272

    Article  Google Scholar 

  33. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):13

    Article  Google Scholar 

  34. Zhang X, Yu J, Wang T, Hou B, Jiao L C (2013) Path-based similarity with instance-level constraints for SemiBoost. In: Proceedings of SPIE international symposium on multispectral image processing and pattern recognition, pp 891911-891911-8

  35. Zhang K, Zhang L, Yang MH (2012) Real-time compressive tracking. In: Proceedings of European conference on computer vision, pp 864–877

  36. Zia K, Balch T, Dellaert F (2005) MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Trans Pattern Anal Mach Intell 27(11):1805–1819

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for their valuable comments and Dr. Regina Chan for her proof reading of the manuscript. This research was supported in part by Research Committee of the University of Macau (MYRG134-FST11-PCM, MYRG181-FST11-PCM) and the Science and Technology Development Fund of Macau SAR (Project No. 008/2013/A1).

Contributions

In this paper, Guoheng Huang and Chi-Man Pun are responsible for the design and writing, and implementation of the proposed method. Cong Lin and Yicong Zhou are responsible for the implementation, experiment settings and proof reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Man Pun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Pun, CM., Lin, C. et al. Non-rigid visual object tracking using user-defined marker and Gaussian kernel. Multimed Tools Appl 75, 5473–5492 (2016). https://doi.org/10.1007/s11042-015-2516-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2516-6

Keywords

Navigation