Skip to main content
Log in

Color topographical map segmentation Algorithm based on linear element features

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In order to overcome the discontinuity of geographic elements during the digitization of scanned topographic maps, a color map segmentation algorithm, which is used to segment color maps into different layers based on linear element features, is proposed in this paper. Linear elements are regarded as the elementary units in this method. We use background removal, thinning, nodes disconnection, labeling and dilation to get the elementary units. Then the main color, which could accurately represent the color feature of linear element, is extracted for clustering on the basis of Fuzzy c-means algorithm. At last, disconnected nodes are merged into the corresponding layers to keep the continuity of the results. The experimental results show that the proposed algorithm outperforms other segmentation approaches that regarding pixels as the elementary units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T (2002) A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21(3):193–199

    Article  Google Scholar 

  2. Biosca JM, Lerma JL (2008) Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods. ISPRS J Photogramm Remote Sens 63(1):84–98

    Article  Google Scholar 

  3. Cai W, Chen S, Zhang D (2007) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn 40(3):825–838

    Article  MATH  Google Scholar 

  4. Campadelli P, Medici D, Schettini R (1997) Color image segmentation using Hopfield networks. Image Vis Comput 15(3):161–166

    Article  Google Scholar 

  5. Celenk M (1990) A color clustering technique for image segmentation. Comput Vision, Graphics, Image Process 52(2):145–170

    Article  Google Scholar 

  6. Chen H, Tang XA, Wang CH, Gan Z (2010) Object oriented segmentation of scanned topographical maps. J Image Graph 9:020

    Google Scholar 

  7. Chen Y, Wang R, Qian J (2006) Extracting contour lines from common-conditioned topographic maps. IEEE Trans Geosci Remote Sens 44(4):1048–1057

    Article  Google Scholar 

  8. Gonzalez RC, Woods RE (2007) Digital image processing. Publishing House of Electronics Industry, Beijing, pp 423–439

    Google Scholar 

  9. Hathaway RJ, Bezdek JC (2001) Fuzzy c-means clustering of incomplete data. IEEE Trans Syst Man Cybern B: Cybern 31(5):735–744

    Article  Google Scholar 

  10. Heipke C, Mayer H, Wiedemann C, Jamet O (1997) Evaluation of automatic road extraction. Int Arch Photogramm Remote Sens 32:151–160

    Google Scholar 

  11. Huang CL (1992) Parallel image segmentation using modified Hopfield model. Pattern Recogn Lett 13(5):345–353

    Article  Google Scholar 

  12. Khotanzad A, Zink E (2003) Contour line and geographic feature extraction from USGS color topographical paper maps. IEEE Trans Pattern Anal Mach Intell 25(1):18–31

    Article  Google Scholar 

  13. Kuntimad G, Ranganath HS (1999) Perfect image segmentation using pulse coupled neural networks. IEEE Trans Neural Netw 10(3):591–598

    Article  Google Scholar 

  14. Kurugollu F, Sankur B, Harmanci AE (2001) Color image segmentation using histogram multithresholding and fusion. Image Vis Comput 19(13):915–928

    Article  Google Scholar 

  15. Leyk, S (2010) Segmentation of colour layers in historical maps based on hierarchical colour sampling. In Graphics Recognition. Achievements, Challenges, and Evolution. Springer Berlin Heidelberg, pp 231–241

  16. Leyk S, Boesch R (2010) Colors of the past: color image segmentation in historical topographic maps based on homogeneity. GeoInformatica 14(1):1–21

    Article  Google Scholar 

  17. Lim WQ (2010) The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans Image Process 19(5):1166–1180

    Article  MathSciNet  Google Scholar 

  18. Lim YW, Lee SU (1990) On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques. Pattern Recogn 23(9):935–952

    Article  Google Scholar 

  19. Miao Q, Xu P, Liu T, Yang Y, Zhang J, Li W (2013) Linear feature separation from topographic maps using energy density and the shear transform. IEEE Trans Image Process 22(4):1548–1558

    Article  MathSciNet  Google Scholar 

  20. Ohlander R, Price K, Reddy DR (1978) Picture segmentation using a recursive region splitting method. Comput Graph Image Process 8(3):313–333

    Article  Google Scholar 

  21. Ong SH, Yeo NC, Lee KH, Venkatesh YV, Cao DM (2002) Segmentation of color images using a two-stage self-organizing network.Image and. Vision Comput 20(4):279–289

    Article  Google Scholar 

  22. Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27

    Google Scholar 

  23. Stewart RD, Fermin I, Opper M (2002) Region growing with pulse-coupled neural networks: an alternative to seeded region growing. IEEE Trans Neural Netw 13(6):1557–1562

    Article  Google Scholar 

  24. Sun JG, Liu J, Zhao LY (2008) Clustering algorithms research. J Software 19(1):48–61

    Article  MATH  Google Scholar 

  25. Tombre K (1995) Graphics recognition—general context and challenges. Pattern Recogn Lett 16(9):883–891

    Article  Google Scholar 

  26. Wei S, Hong Q, Hou M (2011) Automatic image segmentation based on PCNN with adaptive threshold time constant. Neurocomputing 74(9):1485–1491

    Article  Google Scholar 

  27. Wiedemann C, Heipke C, Mayer H, Jamet O (1998) Empirical evaluation of automatically extracted road axes. Empirical Evaluation Techniques in Computer Vision 172–187

  28. Xin D, Zhou X, Zheng H (2006) Contour line extraction from paper-based topographic maps. J Inf Comput Sci 1(5):275–283

    Google Scholar 

  29. Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678

    Article  Google Scholar 

  30. Zheng H, Zhou X, Wang J (2003) Research and implementation of automatic color segmentation algorithm for scanned color maps. J Comput Aided Des Comput Graph 1:003

    Google Scholar 

  31. Zhuang H, Low KS, Yau WY (2012) Multichannel pulse-coupled-neural-network-based color image segmentation for object detection. IEEE Trans Ind Electron 59(8):3299–3308

    Article  Google Scholar 

Download references

Acknowledgments

The work was jointly supported by the National Natural Science Foundations of China under grant No. 61272280, 41271447, 61272195 and 61472302, the Program for New Century Excellent Talents in University (NCET-12-0919), the Fundamental Research Funds for the Central Universities under grant No. K5051203020, K5051303016, K5051303018, BDY081422, and K50513100006, the Creative Project of the Science and Technology State of xi’an under grant No. CXY1341(6), The State Key Laboratory of Geo-information Engineering under grant No. SKLGIE2014-M-4-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiguang Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Miao, Q., Xu, P. et al. Color topographical map segmentation Algorithm based on linear element features. Multimed Tools Appl 75, 5417–5438 (2016). https://doi.org/10.1007/s11042-015-2510-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2510-z

Keywords

Navigation