Skip to main content
Log in

Evolutionary algorithms for a mixed stereovision uncalibrated 3D reconstruction

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes an original 3D shape reconstruction which is a mixture of the passive and active stereovision systems. Similarly to the passive stereovision systems, two cameras are used to acquire the images. As for the active stereovision methods, the detection of the points of interest (POIs) and the matching problem are solved by using a structured-light pattern projected onto the analysed object. An encoding is proposed to ease the matching procedure. Then, Evolutionary Algorithms (EAs) are designed to calculate the depth of the detected POIs. Numerous experiments are conducted to validate the different steps of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Batenburg KJ (2005) An evolutionary algorithm for discrete tomography. Discret Appl Math 151(1–3):36–54

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Hamadou A, Soussen C, Daul C, Blondel W, Wolf D (2013) Flexible calibration of structured-light systems projecting point patterns. Comput Vis Image Underst 117(10):1468–1481

    Article  Google Scholar 

  3. Bensrhair A, Miché P, Debrie R (1996) Fast and automatic stereo vision matching algorithm based on dynamic programming method. Pattern Recogn Lett 17(5):457–466

    Article  Google Scholar 

  4. Bleyer M, Gelautz M (2007) Graph-cut-based stereo matching using image segmentation with symmetrical treatment of occlusions. Signal Process Image Commun 22(2):127–143

    Article  MATH  Google Scholar 

  5. Brunetti A (2000) A fast and precise genetic algorithm for a non-linear fitting problem. Comput Phys Commun 124:204–211

    Article  Google Scholar 

  6. Chou HL, Chen Z (2004) A novel 3D planar object reconstruction from multiple uncalibrated images using the plane-induced homographies. Pattern Recogn Lett 25(12):1399–1410

    Article  Google Scholar 

  7. Cootes TF, Di Mauro EC, Taylor CJ, Lanitis A (1996) Flexible 3D models from uncalibrated cameras. Image Vis Comput 14(8):581–587

    Article  Google Scholar 

  8. Derrac J, García S, Hui S, Suganthan PN, Herrera F (2014) Analyzing convergence performance of evolutionary algorithms: a statistical approach. Inf Sci 289(24):41–58

    Article  Google Scholar 

  9. Dipanda A, Woo S (2010) Towards a real-time 3D shape reconstruction using a structured light system. Pattern Recogn 38(10):1632–1650

    Article  Google Scholar 

  10. Dipanda A, Woo S, Marzani F, Bilbault JM (2003) 3-D shape reconstruction in an active stereo vision system using genetic algorithms. Pattern Recogn 36:2143–2159

    Article  Google Scholar 

  11. Faugeras O, Toscani G (1987) Camera calibration for 3D computer vision. Proc. International Workshop on Machine Vision and Machine Intelligence, Tokyo

    Google Scholar 

  12. Goldberg DE, Genetic Algorithms in Search (1989) Optimization & machine learning. Addison-Wesley, Reading

    Google Scholar 

  13. Guanglong D, Zhang P (2014) Markerless human–robot interface for dual robot manipulators using Kinect sensor. Robot Comput Integr Manuf 30(2):150–159

    Article  Google Scholar 

  14. Han K-P, Song K-W, Chung E-Y, Cho S-J, Ha Y-H (2001) Stereo matching using genetic algorithm with adaptive chromosomes. Pattern Recogn 34(9):1729–1740

    Article  Google Scholar 

  15. Heikkila J (2000) Geometric camera calibration using circular control points. IEEE Trans Pattern Anal 22:1066–1077

    Article  Google Scholar 

  16. Ibañez R, Soria Á, Teyseyre A, Campo M (2014) Easy gesture recognition for Kinect. Adv Eng Softw 76:171–180

    Article  Google Scholar 

  17. Jang W, Je C, Seo Y, Lee SW (2013) Structured-light stereo: comparative analysis and integration of structured-light and active stereo for measuring dynamic shape. Opt Lasers Eng 51(11):1255–1264

    Article  Google Scholar 

  18. Koch A, Dipanda A, Bourgeois-République C (2010) Evolutionary-based 3D reconstruction using an uncalibrated stereovision system: application of building a panoramic object view. Multimed Tools Appl 57(3):565–586

    Article  Google Scholar 

  19. Salvi J, Armangue X, Batlle J (2002) A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recogn 35:1617–1635

    Article  Google Scholar 

  20. Shii F, Zhang X, Liu Y (2004) A new method of camera pose estimation using 2D-3D corner correspondence. Pattern Recogn Lett 25:1155–1163

    Article  Google Scholar 

  21. Wang Y, Li Y, Zhou J, Zhang J, Fang J (2013) A non-encoding structured light approach with infrared illumination for 3D large field shape measurement. Opt Laser Technol 49:28–32

    Article  Google Scholar 

  22. Wei GAO, Liang WANG, Zhan-Yi HU (2008) Flexible calibration of a portable structured light system through surface plane. Acta Autom Sin 34(11):1358–1362

    Article  Google Scholar 

  23. Zhang J, Ge Y, Ong SH, Chui CK, Teoh SH, Yan CH (2008) Rapid surface registration of 3D volumes using a neural network approach. Image Vis Comput 23:201–210

    Article  Google Scholar 

  24. Zhang X, Liu Y. HuangTS (2002) Determining 3D structure and motion of man- made objects from image corners, In: Proceedings of the SSIAI’2 SantaFe, New Mexico, USA, 26–30

  25. Zhao Y, Li X, Li W (2012) Binocular vision system calibration based on a one-dimensional target. Appl Opt 51:3338–3345

    Article  Google Scholar 

  26. Zhengyou Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Bourgeois-République.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, A., Bourgeois-République, C. & Dipanda, A. Evolutionary algorithms for a mixed stereovision uncalibrated 3D reconstruction. Multimed Tools Appl 74, 8703–8721 (2015). https://doi.org/10.1007/s11042-014-2354-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2354-y

Keywords

Navigation