Skip to main content
Log in

Tactile-force brain-computer interface paradigm

Somatosensory multimedia neurotechnology application

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This study explores the extent to which a neurotechnology multimedia application utilizing tactile-force stimulus delivered to the hand holding a force-feedback joystick can serve as a platform for a brain-computer interface (BCI). We present a successful application of an extended multimedia paradigm beyond the classic vision and auditory based approaches. The four pressure directions are used to evoke tactile brain potential responses, thus defining a tactile-force brain computer interface (tfBCI). We present brainwave electroencephalogram (EEG) signal processing and classification procedures leading to successful online interfacing results. Experiment results with seven advanced and five naive users performing online BCI experiments provide a validation of the hand location tfBCI paradigm, while the feasibility of the concept is substantiated by noteworthy information-transfer rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brouwer AM, Van Erp JBF (2010) A tactile P300 brain-computer interface. Front Neurosci 4 (19). doi:10.3389/fnins.2010.00019. http://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2010.00019/abstract

  2. Max 6 (2012). http://cycling74.com/

  3. Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage 34(4):1600–1611. doi:10.1016/j.neuroimage.2006.09.024. http://www.sciencedirect.com/science/article/pii/S1053811906009724

    Article  Google Scholar 

  4. Kaufmann T, Holz EM, Kuebler A (2013) Comparison of tactile, auditory and visual modality for brain-computer interface use: A case study with a patient in the locked-in state. Front Neurosci 7:129. doi:10.3389/fnins.2013.00129. http://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2013.00129/abstract

    Article  MATH  Google Scholar 

  5. Kono S (2014) Tactile-force brain-computer interface paradigm. Bachelor degree thesis, School of Informatics -University of Tsukuba, Tsukuba

  6. Kono S, Aminaka D, Makino S, Rutkowski TM (2013) EEG signal processing and classification for the novel tactile-force brain-computer interface paradigm. In: International conference on Signal-Image Technology Internet-Based Systems (SITIS) 2013, pp 812–817. doi:10.1109/SITIS.2013.132, arXiv:1310.1593

  7. Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, Wolpaw JR (2006) A comparison of classification techniques for the P300 speller. J Neural Eng 3(4):299. http://stacks.iop.org/1741-2552/3/i=4/a=007

    Article  Google Scholar 

  8. Mori H, Matsumoto Y, Kryssanov V, Cooper E, Ogawa H, Makino S, Struzik ZR, Rutkowski TM (2013) Multi-command tactile brain computer interface: a feasibility study. In: Oakley I, Brewster S (eds) Haptic and Audio Interaction Design 2013 (HAID 2013), Lecture Notes in Computer Science, vol 7989. Springer-Verlag, Berlin Heidelberg, pp 50–59. arXiv:1305.4319

    Google Scholar 

  9. Mori H, Matsumoto Y, Struzik ZR, Mori K, Makino S, Mandic D, Rutkowski TM (2013) Multi-command tactile and auditory brain computer interface based on head position stimulation. In: Proceedings of the Fifth International Brain-Computer Interface Meeting 2013, p. Article ID: 095. Graz University of Technology House, Publishing, Asilomar Conference Center, Pacific Grove. doi:10.3217/978-4-83452-381-5/095, http://castor.tugraz.at/doku/BCIMeeting2013/095.pdf

  10. Müller-Putz G, Scherer R, Neuper C, Pfurtscheller G (2006) Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces?. IEEE Trans Neural Syst Rehab Eng 14(1):30–37. doi:10.1109/TNSRE.2005.863842

    Article  Google Scholar 

  11. Plum F, Posner JB (1966) The diagnosis of stupor and coma. FA Davis, Philadelphia

  12. Rutkowski TM, Cichocki A, Mandic DP (2009) Spatial auditory paradigms for brain computer/machine interfacing. In: Proceedings of the international workshop on the principles and applications of spatial hearing 2009 (IWPASH 2009). Miyagi-Zao Royal Hotel, Sendai, p 5

  13. Rutkowski TM, Mori H (2014) Tactile and bone–conduction auditory brain computer interface for vision and hearing impaired users. J Neurosci Methods. doi:10.1016/j.jneumeth.2014.04.010

  14. Schalk G, Mellinger J (2010) A practical guide to brain–computer interfacing with BCI2000. Springer-Verlag, London Limited

    Book  Google Scholar 

  15. van der Waal M, Severens M, Geuze J, Desain P (2012) Introducing the tactile speller: an ERP-based brain–computer interface for communication. J Neural Eng 9(4):045,002. doi:10.1088/1741-2560/9/4/045002, http://stacks.iop.org/1741-2552/9/i=4/a=045002

    Article  MATH  Google Scholar 

  16. Wischenbart M (2010) ForceFeedback joystick driver for Java. http://boat.lachsfeld.at/ffjoystick4java/

  17. Wolpaw J, Wolpaw EW (2012) Brain-computer interfaces: principles and practice. Oxford University Press

Download references

Acknowledgements

This research was supported in part by the Strategic Information and Communications R&D Promotion Program, no. 121803027, of The Ministry of Internal Affairs and Communications in Japan.

Author Contributions

Programmed the tactile-force stimulus generation and delivery interface: SK, TMR. Performed the EEG experiments: SK. Analyzed the data: SK, TMR. Conceived the concept of the tactile-force BCI: TMR. Wrote the paper: TMR, SK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz M. Rutkowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kono, S., Rutkowski, T.M. Tactile-force brain-computer interface paradigm. Multimed Tools Appl 74, 8655–8667 (2015). https://doi.org/10.1007/s11042-014-2351-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2351-1

Keywords

Navigation