Skip to main content
Log in

A survey on compressed domain video analysis techniques

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image and video analysis requires rich features that can characterize various aspects of visual information. These rich features are typically extracted from the pixel values of the images and videos, which require huge amount of computation and seldom useful for real-time analysis. On the contrary, the compressed domain analysis offers relevant information pertaining to the visual content in the form of transform coefficients, motion vectors, quantization steps, coded block patterns with minimal computational burden. The quantum of work done in compressed domain is relatively much less compared to pixel domain. This paper aims to survey various video analysis efforts published during the last decade across the spectrum of video compression standards. In this survey, we have included only the analysis part, excluding the processing aspect of compressed domain. This analysis spans through various computer vision applications such as moving object segmentation, human action recognition, indexing, retrieval, face detection, video classification and object tracking in compressed videos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Achanta R, Kankanhalli M, Mulhem P (2002) Compressed domain object tracking for automatic indexing of objects in MPEG home video. In: IEEE international conference on multimedia and expo, vol 2, pp 61–64

  2. Ali S, Shah M (2007) A Lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: IEEE conference on computer vision and pattern recognition (CVPR), 2007, pp 1–6. doi:10.1109/CVPR.2007.382977

  3. Babu RV, Anantharaman B, Ramakrishnan KR, Srinivasan SH (2002) Compressed domain action classification using HMM. Pattern Recog Lett 23(10):1203–1213

  4. Babu RV, Ramakrishnan K (2007) Compressed domain video retrieval using object and global motion descriptors. Multimed Tools Appl 32(1):93–113

    Article  Google Scholar 

  5. Babu RV, Ramakrishnan KR (2004) Recognition of human actions using motion history information extracted from the compressed video. Image Vis Comput 22(8):597–607

    Article  Google Scholar 

  6. Babu RV, Ramakrishnan KR, Srinivasan SH (2004) Video object segmentation: a compressed domain approach. IEEE Trans Circ Syst Video Technol 14(4):462–474

    Article  Google Scholar 

  7. Benzougar A, Bouthemy P, Fablet R (2001) MRF-based moving object detection from MPEG coded video. In: IEEE international conference on image processing, vol 3, pp 402–405

  8. Bhaskaran V, Konstantinides K (1995) Image and video compression standards: algorithms and architectures. Kluwer Academic Publishers

  9. Biswas S, Babu R V (2013) H.264 compressed video classification using Histogram of Oriented Motion Vectors (HOMV). In: IEEE international conference on acoustics, speech, and signal processing (ICASSP), pp. 2040–2044

  10. Biswas S, Babu RV (2013) Real-time anomaly detection in H.264 compressed videos. In: National conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG) pp 1–4. doi:10.1109/NCVPRIPG.2013.6776164

  11. Biswas S, Babu RV (2014) Anomaly detection in compressed H.264/AVC video. Multimed Tools Appl:1–17. doi:10.1007/s11042-014-2219-4

  12. Biswas S, Praveen RG, Babu RV (2014) Super-pixel based crowd flow segmentation in H.264 compressed videos. In: International conference on image processing

  13. Bjontegaard G, Lillevold K (2002) Context adaptive VLC coding of ceofficients. ISO/IEC Joint Video Team C028

  14. Blank M, Gorelick L, Shechtman E, Irani M, Basri R (2005) Actions as space-time shapes. In: IEEE international conference on computer vision, pp 1395–1402

  15. Chen W, Yang QX, Lin KW, Wang SY, Huang CL (2011) Human and car identification using motion vector in H.264 compressed video. In: Visual communications and image processing, pp 1–4. doi:10.1109/VCIP.2011.6115985

  16. Chen YM, Bajic I, Saeedi P (2011) Moving region segmentation from compressed video using global motion estimation and Markov random fields. IEEE Trans Multimed 13(3):421–431

    Article  Google Scholar 

  17. Chua TS, Zhao Y, Kankanhalli MS (2002) Detection of human faces in compressed domain for video stratification. Vis Comput 18(2):121–133

  18. Davis J, Bobick A (2001) The recognition of human movement using temporal templates. IEEE Trans Pattern Anal Mach Intell 23(3):257–267

  19. De Bruyne S, Poppe C, Verstockt S, Lambert P, Van De Walle R (2009) Estimating motion reliability to improve moving object detection in the H.264/AVC domain. In: IEEE international conference on multimedia and expo, pp 330–333

  20. Dong L, Schwartz S (2006) DCT-based object tracking in compressed video. In: IEEE international conference on acoustics, speech and signal processing, vol 2, pp II–II. doi:10.1109/ICASSP.2006.1660430

  21. Dong L, Zoghlami I, Schwartz S (2006) Object tracking in compressed video with confidence measures. In: IEEE international conference on multimedia and expo, pp 753–756

  22. Eng HL, Ma KK (1999) Motion trajectory extraction based on macroblock motion vectors for video indexing. In: International conference on image processing, vol 3, pp 284–288

  23. Eng HL, Ma KK (2000) Spatiotemporal segmentation of moving video objects over MPEG compressed domain. In: IEEE international conference on multimedia and expo, vol 3, pp 1531–1534

  24. Favalli L, Mecocci A, Moschetti F (2000) Object tracking for retrieval applications in MPEG-2. IEEE Trans Circ Syst Video Technol 10(3):427–432

    Article  Google Scholar 

  25. Fei W, Zhu S (2010) Mean shift clustering-based moving object segmentation in the H.264 compressed domain. IET Image Process 4 (1):11–18

    Article  MathSciNet  Google Scholar 

  26. Gnana Praveen R, Babu R V (2014) Crowd flow segmentation based on motion vectors in H.264 compressed domain. In: 2014 IEEE international conference on electronics, computing and communication technologies (IEEE CONECCT), pp 1–5. doi:10.1109/CONECCT.2014.6740330

  27. Goyat Y, Chateau T, Malaterre L, Trassoudaine L (2006) Vehicle trajectories evaluation by static video sensors. In: Intelligent transportation systems conference, pp 864–869

  28. Guo GD, Jain AK, Ma WY, Zhang HJ (2002) Learning similarity measure for natural image retrieval with relevance feedback. IEEE Trans Neural Netw 13(4):811–820

    Article  Google Scholar 

  29. Hong WD, Lee TH, Chang PC (2007) Real-time foreground segmentation for the moving camera based on H.264 video coding information. In: Future generation communication and networking, vol 1, pp 385–390

  30. Ibrahim M, Rao S (2007) Motion analysis in compressed video - a hybrid approach. In: IEEE international workshop on motion and video computing, pp 17–17

  31. ISO/IEC JTC1 11172-2: Information technology – Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s – Part 2: Video (MPEG-1) (1993)

  32. ISO/IEC JTC1 13818-2Generic coding of moving pictures and associated audio information – Part 2: Video (MPEG-2) (1994)

  33. ISO/IEC JTC1 14496-2: Coding of audio-visual objects – Part 2: Visual (MPEG-4 visual version 1) (1999)

  34. ISO - International Organization for Standardization. http://www.iso.org/iso/home.html

  35. ITU Telecommunication Standardization Sector. http://www.itu.int/en/ITU-T/Pages/default.aspx

  36. ITU-T: Recommendation H.261, Video Codec for Audiovisual Services at px64 kbit/s, version 1 (Dec 1990), version 2 (March 1993)

  37. Jamrozik M, Hayes M (2002) A compressed domain video object segmentation system. In: International conference on image processing, vol 1, pp 113–116

  38. Kapotas S, Skodras A (2010) Moving object detection in the H.264 compressed domain. In: IEEE international conference on imaging systems and techniques, pp 325–328

  39. Käs C, Nicolas H (2008) An Approach to trajectory estimation of moving objects in the H.264 compressed domain. In: Proceedings of the 3rd pacific rim symposium on advances in image and video technology, pp 318–329

  40. Khatoonabadi S, Bajic I (2013) Video object tracking in the compressed domain using spatio-temporal Markov random fields. IEEE Trans Image Process 22(1):300–313

    Article  MathSciNet  Google Scholar 

  41. Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T (2011) HMDB: a large video database for human motion recognition. In: Proceedings of the international conference on computer vision, pp 2556–2563

  42. Lie WN, Chen RL (2001) Tracking moving objects in MPEG-compressed videos. In: IEEE international conference on multimedia and expo, pp 965–968

  43. Liu Z, Lu Y, Zhang Z (2007) Real-time spatiotemporal segmentation of video objects in the H.264 compressed domain. J Vis Commun Image Represent 18(3):275–290

    Article  Google Scholar 

  44. Mak CM, Cham WK (2009) Real-time video object segmentation in H.264 compressed domain. IET Image Process 3(5):272–285

    Article  Google Scholar 

  45. Manjunath B, Ohm JR, Vasudevan V, Yamada A (2001) Color and texture descriptors. IEEE Transa Circ Syst Video Technol 11(6):703–715

    Article  Google Scholar 

  46. Marpe D, Schwarz H, Wiegand T (2003) Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans Circ Syst Video Technol 13(7):620–636

    Article  Google Scholar 

  47. Mehmood K, Mrak M, Calic J, Kondoz A (2009) Object tracking in surveillance videos using compressed domain features from scalable bit-streams. Signal Process Image Commun 24(10):814–824

    Article  Google Scholar 

  48. Mehrabi M, Zargari F, Ghanbari M (2012) Compressed domain content based retrieval using H.264 DC-pictures. MultimedTools Appl 60(2):443–453

    Article  Google Scholar 

  49. Mezaris V, Kompatsiaris I, Boulgouris N, Strintzis M (2004) Real-time compressed-domain spatiotemporal segmentation and ontologies for video indexing and retrieval. IEEE Trans Circ Syst Video Technol 14(5):606–621

    Article  Google Scholar 

  50. Mezaris V, Kompatsiaris I, Kokkinou E, Strintzis MG (2003) Real-time compressed-domain spatiotemporal video segmentation. IEEE Trans Circ Syst Video Technol 14(5):606–621

  51. Mezaris V, Kompatsiaris I, Strintzis MG (2004) Compressed-domain object detection for video understanding. In: Workshop on image analysis for multimedia interactive services (WIAMIS)

  52. Mitsumoto S, Yuasa H, Zen H (1998) Moving object detection from MPEG coded picture. In: MVA, pp 422–425

  53. Niu C, Liu Y (2010) Moving object segmentation in the H.264 compressed domain. In: Zha H, Taniguchi Ri, Maybank S (eds) Asian conference on computer vision, pp 645–654

  54. Ohm J, Sullivan G, Schwarz H, Tan TK, Wiegand T (2012) Comparison of the coding efficiency of video coding standards; including high efficiency video coding (HEVC). IEEE Trans Circ Syst Video Technol 22(12):1669–1684

    Article  Google Scholar 

  55. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  56. Ozer B, Wolf W, Akansu A (2000) Human activity detection in MPEG sequences. In: Proceedings workshop on human motion, pp 61–66

  57. Ozer I, Wolf W (2002) Real-time posture and activity recognition. In: Workshop on motion and video computing, pp 133–138

  58. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2 (6):559–572

    Article  Google Scholar 

  59. Pei W, Zhixia W (2010) Moving object segmentation in H.264/AVC compressed domain using ant colony algorithm. In: International conference on signal processing systems (ICSPS), vol 2, pp 716–719

  60. Poppe C, Bruyne SD, Paridaens T, Lambert P, de Walle RV (2009) Moving object detection in the H.264/AVC compressed domain for video surveillance applications. J Vis Commun Image Represent 20(6):428–437

    Article  Google Scholar 

  61. Porikli F (2004) Real-time video object segmentation for MPEG encoded video sequences. SPIE conference on Real-Time Imaging, vol 5297, pp 195–203

  62. Porikli F, Bashir F, Sun H (2010) Compressed domain video object segmentation. IEEE Trans Circ Syst Video Technol 20(1):2–14

    Article  Google Scholar 

  63. Qiya Z, Gaobo Y, Weiwei C, Zhaoyang Z (2007) A fast and accurate moving object extraction scheme in the MPEG compressed domain. In: International conference on image and graphics, pp 592–597

  64. Rangarajan B, Babu RV (2014) Human action recognition in compressed domain using PBL-McRBFN approach. In: 2014 IEEE ninth international conference on intelligent sensors, sensor networks and information processing (ISSNIP), pp 1–6. doi:10.1109/ISSNIP.2014.6827622

  65. Richardson IEG (2003) H.264 and MPEG-4 video compression: video coding for next-generation multimedia. Wiley

  66. Rijkse K (1996) H.263: Video coding for low-bit-rate communication. IEEE Commun Mag 34(12):42–45

    Article  Google Scholar 

  67. Rodriguez-Benitez L, Moreno-Garcia J, Castro-Schez J, Albusac J, Jimenez-Linares L (2009) Automatic objects behaviour recognition from compressed video domain. Image Vis Comput 27(6):648–657

    Article  Google Scholar 

  68. Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local SVM approach. In: International conference on pattern recognition, pp 32–36

  69. Shi YQ, Sun H (2008) Image and video compression for multimedia engineering: fundamentals, algorithms, and standards, 2nd edn. CRC Press, Inc., Boca Raton

    Book  Google Scholar 

  70. Solana-Cipres C, Fernandez-Escribano G, Rodriguez-Benitez L, Moreno-Garcia J, Jimenez-Linares L (2009) Real-time moving object segmentation in H.264 compressed domain based on approximate reasoning. Int J Approx Reas 51(1):99–114

    Article  Google Scholar 

  71. Soomro K, Zamir AR, Shah M (2012) UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv:abs/1212.0402

  72. Sukmarg O, Rao KR (2000) Fast Object Detection and Segmentation in MPEG Compressed Domain. TENCON. Proceedings 3:364–368

    Google Scholar 

  73. Sullivan G, Ohm J, Han WJ, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circ Syst Video Technol 22(12):1649–1668

    Article  Google Scholar 

  74. Szczerba K, Forchhammer S, Stttrup-Andersen J, Eybye P (2009) Fast compressed domain motion detection in H.264 video streams for video surveillance applications. In: Proceedings, AVSS, pp 478–483

  75. Tan YP, Saur D, Kulkarni S, Ramadge P (2000) Rapid estimation of camera motion from compressed video with application to video annotation. IEEE Trans Circ Syst Video Technol 10(1):133–146

    Article  Google Scholar 

  76. The Moving Picture Experts Group website. http://mpeg.chiariglione.org/

  77. Thilak V, Creusere CD (2004) Tracking of extended size targets in H.264 compressed video using the probabilistic data association filter. In: EUSIPCO, pp 281–284

  78. Tom M, Babu RV (2013) Fast moving-object detection in H.264/AVC compressed domain for video surveillance. In: National conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG). doi:10.1109/NCVPRIPG.2013.6776202

  79. Tom M, Babu RV, Praveen R (2014) Compressed domain human action recognition in H.264/AVC video streams. Multimed Tools Appl. doi:10.1007/s11042-014-2083-2

  80. Vacavant A, Robinault L, Miguet S, Poppe C, de Walle RV (2011) Adaptive background subtraction in H.264/AVC bitstreams based on macroblock sizes. In: VISAPP, pp 51–58

  81. Verstockt S, De Bruyne S, Poppe C, Lambert P, Van De Walle R (2009) Multi-view object localization in H.264/AVC compressed domain. In: IEEE international conference on advanced video and signal based surveillance, pp 370–374

  82. Wang FP, Chung WH, Ni GK, Chen IY, Kuo SY (2012) Moving object extraction using compressed domain features of H.264 INTRA frames. In: IEEE international conference on advanced video and signal-based surveillance, pp 258–263

  83. Wang H, Chang SF (1997) A highly efficient system for automatic face region detection in MPEG video. IEEE Trans Circ Syst Video Technol 7(4):615–628

    Article  MathSciNet  Google Scholar 

  84. Wang J, Patel N, Grosky WI, Fotouhi F (2009) Moving camera moving object segmentation in compressed video sequences. Int J Image Graph 9(4):609–627

    Article  Google Scholar 

  85. Wang R, Zhang H, Zhang Y (2000) A confidence measure based moving object extraction system built for compressed domain. In: Proceedings of the IEEE international symposium on circuits and systems, p 21–24

  86. Wang T, Liang J, Wang X, Wang S (2012) Background modeling using local binary patterns of motion vector. In: IEEE conference on visual communications and image processing, pp 1–5. doi:10.1109/VCIP.2012.6410784

  87. Wang W, Yang L, Gao W (2008) Modeling background and segmenting moving objects from compressed video. IEEE Trans Circ Syst Video Technol 18(5):670–681

    Article  Google Scholar 

  88. Welcome to the IEC - International Electrotechnical Commission. http://www.iec.ch/

  89. Wiegand T, Sullivan G, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circ Syst Video Technol 13(7):560–576

    Article  Google Scholar 

  90. Yang J, Wang S, Lei Z, Zhao Y, Li S (2012) Spatio-temporal LBP based moving object segmentation in compressed domain. In: IEEE international conference on advanced video and signal-based surveillance (AVSS), pp 252–257

  91. Yeo BL, Liu B (1995) Rapid scene analysis on compressed video. IEEE transactions on circuits and systems for video technology 5(6):533–544

    Article  Google Scholar 

  92. Yeo C, Ahammad P, Ramchandran K, Sastry S (2008) High-speed action recognition and localization in compressed domain videos. IEEE Trans Circ Syst Video Technol 18(8):1006–1015

    Article  Google Scholar 

  93. Yoneyama A, Nakajima Y, Yanagihara H, Sugano M (1999) Moving object detection and identification from MPEG coded data. In: International conference on image processing, vol 2, pp 934–938

  94. You W, Sabirin MSH, Kim M (2007) Moving object tracking in H.264/AVC bitstream. In: MCAM, pp 483–492

  95. You W, Sabirin MSH, Kim M (2012) Real-time detection and tracking of multiple objects with partial decoding in H.264/AVC bitstream domain. arXiv:abs/1202.4743

  96. Yu DL (2003) Video analysis and indexing in compressed domain. Master Of Science Thesis, Institute for Infocomm Research, National University of Singapore

  97. Yu X, Xue P, Duan L, Tian Q (2007) An algorithm to estimate mean vehicle speed from MPEG Skycam video. Multimed Tools Appl 34(1):85–105

    Article  Google Scholar 

  98. Yu XD, Duan LY, Tian Q (2003) Robust moving video object segmentation in the MPEG compressed domain. In: IEEE international conference on image processing, vol 3. doi:10.1109/ICIP.2003.1247399

  99. Zeng W, Du J, Gao W, Huang Q (2005) Robust moving object segmentation on H.264/AVC compressed video using the block-based MRF model. Real-Time Imaging 11(4):290–299

    Article  Google Scholar 

  100. Zeng W, Gao W, Zhao D (2003) Automatic moving object extraction in MPEG video. In: Proceedings of the international symposium on circuits and systems, vol 2, pp 524–527

Download references

Acknowledgments

This work was supported by CARS (CARS-25) project from Centre for Artificial Intelligence and Robotics, Defence Research and Development Organization (DRDO), Govt. of India. The authors wish to express grateful thanks to the referees for their useful comments and suggestions to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Venkatesh Babu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, R.V., Tom, M. & Wadekar, P. A survey on compressed domain video analysis techniques. Multimed Tools Appl 75, 1043–1078 (2016). https://doi.org/10.1007/s11042-014-2345-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2345-z

Keywords

Navigation