Abstract
Image and video analysis requires rich features that can characterize various aspects of visual information. These rich features are typically extracted from the pixel values of the images and videos, which require huge amount of computation and seldom useful for real-time analysis. On the contrary, the compressed domain analysis offers relevant information pertaining to the visual content in the form of transform coefficients, motion vectors, quantization steps, coded block patterns with minimal computational burden. The quantum of work done in compressed domain is relatively much less compared to pixel domain. This paper aims to survey various video analysis efforts published during the last decade across the spectrum of video compression standards. In this survey, we have included only the analysis part, excluding the processing aspect of compressed domain. This analysis spans through various computer vision applications such as moving object segmentation, human action recognition, indexing, retrieval, face detection, video classification and object tracking in compressed videos.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Achanta R, Kankanhalli M, Mulhem P (2002) Compressed domain object tracking for automatic indexing of objects in MPEG home video. In: IEEE international conference on multimedia and expo, vol 2, pp 61–64
Ali S, Shah M (2007) A Lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: IEEE conference on computer vision and pattern recognition (CVPR), 2007, pp 1–6. doi:10.1109/CVPR.2007.382977
Babu RV, Anantharaman B, Ramakrishnan KR, Srinivasan SH (2002) Compressed domain action classification using HMM. Pattern Recog Lett 23(10):1203–1213
Babu RV, Ramakrishnan K (2007) Compressed domain video retrieval using object and global motion descriptors. Multimed Tools Appl 32(1):93–113
Babu RV, Ramakrishnan KR (2004) Recognition of human actions using motion history information extracted from the compressed video. Image Vis Comput 22(8):597–607
Babu RV, Ramakrishnan KR, Srinivasan SH (2004) Video object segmentation: a compressed domain approach. IEEE Trans Circ Syst Video Technol 14(4):462–474
Benzougar A, Bouthemy P, Fablet R (2001) MRF-based moving object detection from MPEG coded video. In: IEEE international conference on image processing, vol 3, pp 402–405
Bhaskaran V, Konstantinides K (1995) Image and video compression standards: algorithms and architectures. Kluwer Academic Publishers
Biswas S, Babu R V (2013) H.264 compressed video classification using Histogram of Oriented Motion Vectors (HOMV). In: IEEE international conference on acoustics, speech, and signal processing (ICASSP), pp. 2040–2044
Biswas S, Babu RV (2013) Real-time anomaly detection in H.264 compressed videos. In: National conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG) pp 1–4. doi:10.1109/NCVPRIPG.2013.6776164
Biswas S, Babu RV (2014) Anomaly detection in compressed H.264/AVC video. Multimed Tools Appl:1–17. doi:10.1007/s11042-014-2219-4
Biswas S, Praveen RG, Babu RV (2014) Super-pixel based crowd flow segmentation in H.264 compressed videos. In: International conference on image processing
Bjontegaard G, Lillevold K (2002) Context adaptive VLC coding of ceofficients. ISO/IEC Joint Video Team C028
Blank M, Gorelick L, Shechtman E, Irani M, Basri R (2005) Actions as space-time shapes. In: IEEE international conference on computer vision, pp 1395–1402
Chen W, Yang QX, Lin KW, Wang SY, Huang CL (2011) Human and car identification using motion vector in H.264 compressed video. In: Visual communications and image processing, pp 1–4. doi:10.1109/VCIP.2011.6115985
Chen YM, Bajic I, Saeedi P (2011) Moving region segmentation from compressed video using global motion estimation and Markov random fields. IEEE Trans Multimed 13(3):421–431
Chua TS, Zhao Y, Kankanhalli MS (2002) Detection of human faces in compressed domain for video stratification. Vis Comput 18(2):121–133
Davis J, Bobick A (2001) The recognition of human movement using temporal templates. IEEE Trans Pattern Anal Mach Intell 23(3):257–267
De Bruyne S, Poppe C, Verstockt S, Lambert P, Van De Walle R (2009) Estimating motion reliability to improve moving object detection in the H.264/AVC domain. In: IEEE international conference on multimedia and expo, pp 330–333
Dong L, Schwartz S (2006) DCT-based object tracking in compressed video. In: IEEE international conference on acoustics, speech and signal processing, vol 2, pp II–II. doi:10.1109/ICASSP.2006.1660430
Dong L, Zoghlami I, Schwartz S (2006) Object tracking in compressed video with confidence measures. In: IEEE international conference on multimedia and expo, pp 753–756
Eng HL, Ma KK (1999) Motion trajectory extraction based on macroblock motion vectors for video indexing. In: International conference on image processing, vol 3, pp 284–288
Eng HL, Ma KK (2000) Spatiotemporal segmentation of moving video objects over MPEG compressed domain. In: IEEE international conference on multimedia and expo, vol 3, pp 1531–1534
Favalli L, Mecocci A, Moschetti F (2000) Object tracking for retrieval applications in MPEG-2. IEEE Trans Circ Syst Video Technol 10(3):427–432
Fei W, Zhu S (2010) Mean shift clustering-based moving object segmentation in the H.264 compressed domain. IET Image Process 4 (1):11–18
Gnana Praveen R, Babu R V (2014) Crowd flow segmentation based on motion vectors in H.264 compressed domain. In: 2014 IEEE international conference on electronics, computing and communication technologies (IEEE CONECCT), pp 1–5. doi:10.1109/CONECCT.2014.6740330
Goyat Y, Chateau T, Malaterre L, Trassoudaine L (2006) Vehicle trajectories evaluation by static video sensors. In: Intelligent transportation systems conference, pp 864–869
Guo GD, Jain AK, Ma WY, Zhang HJ (2002) Learning similarity measure for natural image retrieval with relevance feedback. IEEE Trans Neural Netw 13(4):811–820
Hong WD, Lee TH, Chang PC (2007) Real-time foreground segmentation for the moving camera based on H.264 video coding information. In: Future generation communication and networking, vol 1, pp 385–390
Ibrahim M, Rao S (2007) Motion analysis in compressed video - a hybrid approach. In: IEEE international workshop on motion and video computing, pp 17–17
ISO/IEC JTC1 11172-2: Information technology – Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s – Part 2: Video (MPEG-1) (1993)
ISO/IEC JTC1 13818-2Generic coding of moving pictures and associated audio information – Part 2: Video (MPEG-2) (1994)
ISO/IEC JTC1 14496-2: Coding of audio-visual objects – Part 2: Visual (MPEG-4 visual version 1) (1999)
ISO - International Organization for Standardization. http://www.iso.org/iso/home.html
ITU Telecommunication Standardization Sector. http://www.itu.int/en/ITU-T/Pages/default.aspx
ITU-T: Recommendation H.261, Video Codec for Audiovisual Services at px64 kbit/s, version 1 (Dec 1990), version 2 (March 1993)
Jamrozik M, Hayes M (2002) A compressed domain video object segmentation system. In: International conference on image processing, vol 1, pp 113–116
Kapotas S, Skodras A (2010) Moving object detection in the H.264 compressed domain. In: IEEE international conference on imaging systems and techniques, pp 325–328
Käs C, Nicolas H (2008) An Approach to trajectory estimation of moving objects in the H.264 compressed domain. In: Proceedings of the 3rd pacific rim symposium on advances in image and video technology, pp 318–329
Khatoonabadi S, Bajic I (2013) Video object tracking in the compressed domain using spatio-temporal Markov random fields. IEEE Trans Image Process 22(1):300–313
Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T (2011) HMDB: a large video database for human motion recognition. In: Proceedings of the international conference on computer vision, pp 2556–2563
Lie WN, Chen RL (2001) Tracking moving objects in MPEG-compressed videos. In: IEEE international conference on multimedia and expo, pp 965–968
Liu Z, Lu Y, Zhang Z (2007) Real-time spatiotemporal segmentation of video objects in the H.264 compressed domain. J Vis Commun Image Represent 18(3):275–290
Mak CM, Cham WK (2009) Real-time video object segmentation in H.264 compressed domain. IET Image Process 3(5):272–285
Manjunath B, Ohm JR, Vasudevan V, Yamada A (2001) Color and texture descriptors. IEEE Transa Circ Syst Video Technol 11(6):703–715
Marpe D, Schwarz H, Wiegand T (2003) Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans Circ Syst Video Technol 13(7):620–636
Mehmood K, Mrak M, Calic J, Kondoz A (2009) Object tracking in surveillance videos using compressed domain features from scalable bit-streams. Signal Process Image Commun 24(10):814–824
Mehrabi M, Zargari F, Ghanbari M (2012) Compressed domain content based retrieval using H.264 DC-pictures. MultimedTools Appl 60(2):443–453
Mezaris V, Kompatsiaris I, Boulgouris N, Strintzis M (2004) Real-time compressed-domain spatiotemporal segmentation and ontologies for video indexing and retrieval. IEEE Trans Circ Syst Video Technol 14(5):606–621
Mezaris V, Kompatsiaris I, Kokkinou E, Strintzis MG (2003) Real-time compressed-domain spatiotemporal video segmentation. IEEE Trans Circ Syst Video Technol 14(5):606–621
Mezaris V, Kompatsiaris I, Strintzis MG (2004) Compressed-domain object detection for video understanding. In: Workshop on image analysis for multimedia interactive services (WIAMIS)
Mitsumoto S, Yuasa H, Zen H (1998) Moving object detection from MPEG coded picture. In: MVA, pp 422–425
Niu C, Liu Y (2010) Moving object segmentation in the H.264 compressed domain. In: Zha H, Taniguchi Ri, Maybank S (eds) Asian conference on computer vision, pp 645–654
Ohm J, Sullivan G, Schwarz H, Tan TK, Wiegand T (2012) Comparison of the coding efficiency of video coding standards; including high efficiency video coding (HEVC). IEEE Trans Circ Syst Video Technol 22(12):1669–1684
Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987
Ozer B, Wolf W, Akansu A (2000) Human activity detection in MPEG sequences. In: Proceedings workshop on human motion, pp 61–66
Ozer I, Wolf W (2002) Real-time posture and activity recognition. In: Workshop on motion and video computing, pp 133–138
Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2 (6):559–572
Pei W, Zhixia W (2010) Moving object segmentation in H.264/AVC compressed domain using ant colony algorithm. In: International conference on signal processing systems (ICSPS), vol 2, pp 716–719
Poppe C, Bruyne SD, Paridaens T, Lambert P, de Walle RV (2009) Moving object detection in the H.264/AVC compressed domain for video surveillance applications. J Vis Commun Image Represent 20(6):428–437
Porikli F (2004) Real-time video object segmentation for MPEG encoded video sequences. SPIE conference on Real-Time Imaging, vol 5297, pp 195–203
Porikli F, Bashir F, Sun H (2010) Compressed domain video object segmentation. IEEE Trans Circ Syst Video Technol 20(1):2–14
Qiya Z, Gaobo Y, Weiwei C, Zhaoyang Z (2007) A fast and accurate moving object extraction scheme in the MPEG compressed domain. In: International conference on image and graphics, pp 592–597
Rangarajan B, Babu RV (2014) Human action recognition in compressed domain using PBL-McRBFN approach. In: 2014 IEEE ninth international conference on intelligent sensors, sensor networks and information processing (ISSNIP), pp 1–6. doi:10.1109/ISSNIP.2014.6827622
Richardson IEG (2003) H.264 and MPEG-4 video compression: video coding for next-generation multimedia. Wiley
Rijkse K (1996) H.263: Video coding for low-bit-rate communication. IEEE Commun Mag 34(12):42–45
Rodriguez-Benitez L, Moreno-Garcia J, Castro-Schez J, Albusac J, Jimenez-Linares L (2009) Automatic objects behaviour recognition from compressed video domain. Image Vis Comput 27(6):648–657
Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local SVM approach. In: International conference on pattern recognition, pp 32–36
Shi YQ, Sun H (2008) Image and video compression for multimedia engineering: fundamentals, algorithms, and standards, 2nd edn. CRC Press, Inc., Boca Raton
Solana-Cipres C, Fernandez-Escribano G, Rodriguez-Benitez L, Moreno-Garcia J, Jimenez-Linares L (2009) Real-time moving object segmentation in H.264 compressed domain based on approximate reasoning. Int J Approx Reas 51(1):99–114
Soomro K, Zamir AR, Shah M (2012) UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv:abs/1212.0402
Sukmarg O, Rao KR (2000) Fast Object Detection and Segmentation in MPEG Compressed Domain. TENCON. Proceedings 3:364–368
Sullivan G, Ohm J, Han WJ, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circ Syst Video Technol 22(12):1649–1668
Szczerba K, Forchhammer S, Stttrup-Andersen J, Eybye P (2009) Fast compressed domain motion detection in H.264 video streams for video surveillance applications. In: Proceedings, AVSS, pp 478–483
Tan YP, Saur D, Kulkarni S, Ramadge P (2000) Rapid estimation of camera motion from compressed video with application to video annotation. IEEE Trans Circ Syst Video Technol 10(1):133–146
The Moving Picture Experts Group website. http://mpeg.chiariglione.org/
Thilak V, Creusere CD (2004) Tracking of extended size targets in H.264 compressed video using the probabilistic data association filter. In: EUSIPCO, pp 281–284
Tom M, Babu RV (2013) Fast moving-object detection in H.264/AVC compressed domain for video surveillance. In: National conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG). doi:10.1109/NCVPRIPG.2013.6776202
Tom M, Babu RV, Praveen R (2014) Compressed domain human action recognition in H.264/AVC video streams. Multimed Tools Appl. doi:10.1007/s11042-014-2083-2
Vacavant A, Robinault L, Miguet S, Poppe C, de Walle RV (2011) Adaptive background subtraction in H.264/AVC bitstreams based on macroblock sizes. In: VISAPP, pp 51–58
Verstockt S, De Bruyne S, Poppe C, Lambert P, Van De Walle R (2009) Multi-view object localization in H.264/AVC compressed domain. In: IEEE international conference on advanced video and signal based surveillance, pp 370–374
Wang FP, Chung WH, Ni GK, Chen IY, Kuo SY (2012) Moving object extraction using compressed domain features of H.264 INTRA frames. In: IEEE international conference on advanced video and signal-based surveillance, pp 258–263
Wang H, Chang SF (1997) A highly efficient system for automatic face region detection in MPEG video. IEEE Trans Circ Syst Video Technol 7(4):615–628
Wang J, Patel N, Grosky WI, Fotouhi F (2009) Moving camera moving object segmentation in compressed video sequences. Int J Image Graph 9(4):609–627
Wang R, Zhang H, Zhang Y (2000) A confidence measure based moving object extraction system built for compressed domain. In: Proceedings of the IEEE international symposium on circuits and systems, p 21–24
Wang T, Liang J, Wang X, Wang S (2012) Background modeling using local binary patterns of motion vector. In: IEEE conference on visual communications and image processing, pp 1–5. doi:10.1109/VCIP.2012.6410784
Wang W, Yang L, Gao W (2008) Modeling background and segmenting moving objects from compressed video. IEEE Trans Circ Syst Video Technol 18(5):670–681
Welcome to the IEC - International Electrotechnical Commission. http://www.iec.ch/
Wiegand T, Sullivan G, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circ Syst Video Technol 13(7):560–576
Yang J, Wang S, Lei Z, Zhao Y, Li S (2012) Spatio-temporal LBP based moving object segmentation in compressed domain. In: IEEE international conference on advanced video and signal-based surveillance (AVSS), pp 252–257
Yeo BL, Liu B (1995) Rapid scene analysis on compressed video. IEEE transactions on circuits and systems for video technology 5(6):533–544
Yeo C, Ahammad P, Ramchandran K, Sastry S (2008) High-speed action recognition and localization in compressed domain videos. IEEE Trans Circ Syst Video Technol 18(8):1006–1015
Yoneyama A, Nakajima Y, Yanagihara H, Sugano M (1999) Moving object detection and identification from MPEG coded data. In: International conference on image processing, vol 2, pp 934–938
You W, Sabirin MSH, Kim M (2007) Moving object tracking in H.264/AVC bitstream. In: MCAM, pp 483–492
You W, Sabirin MSH, Kim M (2012) Real-time detection and tracking of multiple objects with partial decoding in H.264/AVC bitstream domain. arXiv:abs/1202.4743
Yu DL (2003) Video analysis and indexing in compressed domain. Master Of Science Thesis, Institute for Infocomm Research, National University of Singapore
Yu X, Xue P, Duan L, Tian Q (2007) An algorithm to estimate mean vehicle speed from MPEG Skycam video. Multimed Tools Appl 34(1):85–105
Yu XD, Duan LY, Tian Q (2003) Robust moving video object segmentation in the MPEG compressed domain. In: IEEE international conference on image processing, vol 3. doi:10.1109/ICIP.2003.1247399
Zeng W, Du J, Gao W, Huang Q (2005) Robust moving object segmentation on H.264/AVC compressed video using the block-based MRF model. Real-Time Imaging 11(4):290–299
Zeng W, Gao W, Zhao D (2003) Automatic moving object extraction in MPEG video. In: Proceedings of the international symposium on circuits and systems, vol 2, pp 524–527
Acknowledgments
This work was supported by CARS (CARS-25) project from Centre for Artificial Intelligence and Robotics, Defence Research and Development Organization (DRDO), Govt. of India. The authors wish to express grateful thanks to the referees for their useful comments and suggestions to improve the presentation of this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Babu, R.V., Tom, M. & Wadekar, P. A survey on compressed domain video analysis techniques. Multimed Tools Appl 75, 1043–1078 (2016). https://doi.org/10.1007/s11042-014-2345-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-014-2345-z